# Ultralytics YOLO 🚀, AGPL-3.0 license import shutil from pathlib import Path import cv2 import numpy as np import torch from PIL import Image from torchvision.transforms import ToTensor from ultralytics import RTDETR, YOLO from ultralytics.data.build import load_inference_source from ultralytics.utils import LINUX, MACOS, ONLINE, ROOT, SETTINGS from ultralytics.utils.torch_utils import TORCH_1_9 WEIGHTS_DIR = Path(SETTINGS['weights_dir']) MODEL = WEIGHTS_DIR / 'path with spaces' / 'yolov8n.pt' # test spaces in path CFG = 'yolov8n.yaml' SOURCE = ROOT / 'assets/bus.jpg' SOURCE_GREYSCALE = Path(f'{SOURCE.parent / SOURCE.stem}_greyscale.jpg') SOURCE_RGBA = Path(f'{SOURCE.parent / SOURCE.stem}_4ch.png') # Convert SOURCE to greyscale and 4-ch im = Image.open(SOURCE) im.convert('L').save(SOURCE_GREYSCALE) # greyscale im.convert('RGBA').save(SOURCE_RGBA) # 4-ch PNG with alpha def test_model_forward(): model = YOLO(CFG) model(SOURCE, imgsz=32) def test_model_info(): model = YOLO(MODEL) model.info(verbose=True) def test_model_fuse(): model = YOLO(MODEL) model.fuse() def test_predict_dir(): model = YOLO(MODEL) model(source=ROOT / 'assets', imgsz=32) def test_predict_img(): model = YOLO(MODEL) seg_model = YOLO(WEIGHTS_DIR / 'yolov8n-seg.pt') cls_model = YOLO(WEIGHTS_DIR / 'yolov8n-cls.pt') pose_model = YOLO(WEIGHTS_DIR / 'yolov8n-pose.pt') im = cv2.imread(str(SOURCE)) assert len(model(source=Image.open(SOURCE), save=True, verbose=True, imgsz=32)) == 1 # PIL assert len(model(source=im, save=True, save_txt=True, imgsz=32)) == 1 # ndarray assert len(model(source=[im, im], save=True, save_txt=True, imgsz=32)) == 2 # batch assert len(list(model(source=[im, im], save=True, stream=True, imgsz=32))) == 2 # stream assert len(model(torch.zeros(320, 640, 3).numpy(), imgsz=32)) == 1 # tensor to numpy batch = [ str(SOURCE), # filename Path(SOURCE), # Path 'https://ultralytics.com/images/zidane.jpg' if ONLINE else SOURCE, # URI cv2.imread(str(SOURCE)), # OpenCV Image.open(SOURCE), # PIL np.zeros((320, 640, 3))] # numpy assert len(model(batch, imgsz=32)) == len(batch) # multiple sources in a batch # Test tensor inference im = cv2.imread(str(SOURCE)) # OpenCV t = cv2.resize(im, (32, 32)) t = ToTensor()(t) t = torch.stack([t, t, t, t]) results = model(t, imgsz=32) assert len(results) == t.shape[0] results = seg_model(t, imgsz=32) assert len(results) == t.shape[0] results = cls_model(t, imgsz=32) assert len(results) == t.shape[0] results = pose_model(t, imgsz=32) assert len(results) == t.shape[0] def test_predict_grey_and_4ch(): model = YOLO(MODEL) for f in SOURCE_RGBA, SOURCE_GREYSCALE: for source in Image.open(f), cv2.imread(str(f)), f: model(source, save=True, verbose=True, imgsz=32) def test_track_stream(): # Test YouTube streaming inference (short 10 frame video) with non-default ByteTrack tracker model = YOLO(MODEL) model.track('https://youtu.be/G17sBkb38XQ', imgsz=32, tracker='bytetrack.yaml') def test_val(): model = YOLO(MODEL) model.val(data='coco8.yaml', imgsz=32) def test_amp(): if torch.cuda.is_available(): from ultralytics.utils.checks import check_amp model = YOLO(MODEL).model.cuda() assert check_amp(model) def test_train_scratch(): model = YOLO(CFG) model.train(data='coco8.yaml', epochs=1, imgsz=32, cache='disk', batch=-1) # test disk caching with AutoBatch model(SOURCE) def test_train_pretrained(): model = YOLO(MODEL) model.train(data='coco8.yaml', epochs=1, imgsz=32, cache='ram') # test RAM caching model(SOURCE) def test_export_torchscript(): model = YOLO(MODEL) f = model.export(format='torchscript') YOLO(f)(SOURCE) # exported model inference def test_export_onnx(): model = YOLO(MODEL) f = model.export(format='onnx') YOLO(f)(SOURCE) # exported model inference def test_export_openvino(): if not MACOS: model = YOLO(MODEL) f = model.export(format='openvino') YOLO(f)(SOURCE) # exported model inference def test_export_coreml(): # sourcery skip: move-assign model = YOLO(MODEL) model.export(format='coreml', nms=True) # if MACOS: # YOLO(f)(SOURCE) # model prediction only supported on macOS def test_export_tflite(enabled=False): # TF suffers from install conflicts on Windows and macOS if enabled and LINUX: model = YOLO(MODEL) f = model.export(format='tflite') YOLO(f)(SOURCE) def test_export_pb(enabled=False): # TF suffers from install conflicts on Windows and macOS if enabled and LINUX: model = YOLO(MODEL) f = model.export(format='pb') YOLO(f)(SOURCE) def test_export_paddle(enabled=False): # Paddle protobuf requirements conflicting with onnx protobuf requirements if enabled: model = YOLO(MODEL) model.export(format='paddle') def test_all_model_yamls(): for m in (ROOT / 'cfg' / 'models').rglob('*.yaml'): if 'rtdetr' in m.name: if TORCH_1_9: # torch<=1.8 issue - TypeError: __init__() got an unexpected keyword argument 'batch_first' RTDETR(m.name) else: YOLO(m.name) def test_workflow(): model = YOLO(MODEL) model.train(data='coco8.yaml', epochs=1, imgsz=32) model.val() model.predict(SOURCE) model.export(format='onnx') # export a model to ONNX format def test_predict_callback_and_setup(): # Test callback addition for prediction def on_predict_batch_end(predictor): # results -> List[batch_size] path, im0s, _, _ = predictor.batch im0s = im0s if isinstance(im0s, list) else [im0s] bs = [predictor.dataset.bs for _ in range(len(path))] predictor.results = zip(predictor.results, im0s, bs) model = YOLO(MODEL) model.add_callback('on_predict_batch_end', on_predict_batch_end) dataset = load_inference_source(source=SOURCE) bs = dataset.bs # noqa access predictor properties results = model.predict(dataset, stream=True) # source already setup for r, im0, bs in results: print('test_callback', im0.shape) print('test_callback', bs) boxes = r.boxes # Boxes object for bbox outputs print(boxes) def test_results(): for m in 'yolov8n-pose.pt', 'yolov8n-seg.pt', 'yolov8n.pt', 'yolov8n-cls.pt': model = YOLO(m) results = model([SOURCE, SOURCE]) for r in results: r = r.cpu().numpy() r = r.to(device='cpu', dtype=torch.float32) r.save_txt(txt_file='runs/tests/label.txt', save_conf=True) r.save_crop(save_dir='runs/tests/crops/') r.tojson(normalize=True) r.plot(pil=True) r.plot(conf=True, boxes=True) print(r) print(r.path) for k in r.keys: print(getattr(r, k)) def test_data_utils(): # Test functions in ultralytics/data/utils.py from ultralytics.data.utils import HUBDatasetStats, autosplit, zip_directory from ultralytics.utils.downloads import download # from ultralytics.utils.files import WorkingDirectory # with WorkingDirectory(ROOT.parent / 'tests'): Path('tests/coco8.zip').unlink(missing_ok=True) Path('coco8.zip').unlink(missing_ok=True) download('https://github.com/ultralytics/hub/raw/master/example_datasets/coco8.zip', unzip=False) shutil.move('coco8.zip', 'tests') shutil.rmtree('tests/coco8', ignore_errors=True) stats = HUBDatasetStats('tests/coco8.zip', task='detect') stats.get_json(save=False) stats.process_images() autosplit('tests/coco8') zip_directory('tests/coco8/images/val') # zip shutil.rmtree('tests/coco8', ignore_errors=True) shutil.rmtree('tests/coco8-hub', ignore_errors=True)