import torch from ultralytics.yolo.engine.results import Results from ultralytics.yolo.fastsam.utils import bbox_iou from ultralytics.yolo.utils import DEFAULT_CFG, ops from ultralytics.yolo.v8.detect.predict import DetectionPredictor class FastSAMPredictor(DetectionPredictor): def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): super().__init__(cfg, overrides, _callbacks) self.args.task = 'segment' def postprocess(self, preds, img, orig_imgs): """TODO: filter by classes.""" p = ops.non_max_suppression(preds[0], self.args.conf, self.args.iou, agnostic=self.args.agnostic_nms, max_det=self.args.max_det, nc=len(self.model.names), classes=self.args.classes) full_box = torch.zeros_like(p[0][0]) full_box[2], full_box[3], full_box[4], full_box[6:] = img.shape[3], img.shape[2], 1.0, 1.0 full_box = full_box.view(1, -1) critical_iou_index = bbox_iou(full_box[0][:4], p[0][:, :4], iou_thres=0.9, image_shape=img.shape[2:]) if critical_iou_index.numel() != 0: full_box[0][4] = p[0][critical_iou_index][:, 4] full_box[0][6:] = p[0][critical_iou_index][:, 6:] p[0][critical_iou_index] = full_box results = [] proto = preds[1][-1] if len(preds[1]) == 3 else preds[1] # second output is len 3 if pt, but only 1 if exported for i, pred in enumerate(p): orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs path = self.batch[0] img_path = path[i] if isinstance(path, list) else path if not len(pred): # save empty boxes results.append(Results(orig_img=orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6])) continue if self.args.retina_masks: if not isinstance(orig_imgs, torch.Tensor): pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape) masks = ops.process_mask_native(proto[i], pred[:, 6:], pred[:, :4], orig_img.shape[:2]) # HWC else: masks = ops.process_mask(proto[i], pred[:, 6:], pred[:, :4], img.shape[2:], upsample=True) # HWC if not isinstance(orig_imgs, torch.Tensor): pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape) results.append( Results(orig_img=orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6], masks=masks)) return results