# Ultralytics YOLO 🚀, AGPL-3.0 license from functools import partial import torch from ultralytics.yolo.utils import IterableSimpleNamespace, yaml_load from ultralytics.yolo.utils.checks import check_yaml from .trackers import BOTSORT, BYTETracker TRACKER_MAP = {'bytetrack': BYTETracker, 'botsort': BOTSORT} def on_predict_start(predictor, persist=False): """ Initialize trackers for object tracking during prediction. Args: predictor (object): The predictor object to initialize trackers for. persist (bool, optional): Whether to persist the trackers if they already exist. Defaults to False. Raises: AssertionError: If the tracker_type is not 'bytetrack' or 'botsort'. """ if hasattr(predictor, 'trackers') and persist: return tracker = check_yaml(predictor.args.tracker) cfg = IterableSimpleNamespace(**yaml_load(tracker)) assert cfg.tracker_type in ['bytetrack', 'botsort'], \ f"Only support 'bytetrack' and 'botsort' for now, but got '{cfg.tracker_type}'" trackers = [] for _ in range(predictor.dataset.bs): tracker = TRACKER_MAP[cfg.tracker_type](args=cfg, frame_rate=30) trackers.append(tracker) predictor.trackers = trackers def on_predict_postprocess_end(predictor): """Postprocess detected boxes and update with object tracking.""" bs = predictor.dataset.bs im0s = predictor.batch[1] for i in range(bs): det = predictor.results[i].boxes.cpu().numpy() if len(det) == 0: continue tracks = predictor.trackers[i].update(det, im0s[i]) if len(tracks) == 0: continue idx = tracks[:, -1].tolist() predictor.results[i] = predictor.results[i][idx] predictor.results[i].update(boxes=torch.as_tensor(tracks[:, :-1])) def register_tracker(model, persist): """ Register tracking callbacks to the model for object tracking during prediction. Args: model (object): The model object to register tracking callbacks for. persist (bool): Whether to persist the trackers if they already exist. """ model.add_callback('on_predict_start', partial(on_predict_start, persist=persist)) model.add_callback('on_predict_postprocess_end', on_predict_postprocess_end)