# YOLO Inference API (UNDER CONSTRUCTION) The YOLO Inference API allows you to access the YOLOv8 object detection capabilities via a RESTful API. This enables you to run object detection on images without the need to install and set up the YOLOv8 environment locally. ## API URL The API URL is the address used to access the YOLO Inference API. In this case, the base URL is: ``` https://api.ultralytics.com/inference/v1 ``` To access the API with a specific model and your API key, you can include them as query parameters in the API URL. The `model` parameter refers to the `MODEL_ID` you want to use for inference, and the `key` parameter corresponds to your `API_KEY`. The complete API URL with the model and API key parameters would be: ``` https://api.ultralytics.com/inference/v1?model=MODEL_ID&key=API_KEY ``` Replace `MODEL_ID` with the ID of the model you want to use and `API_KEY` with your actual API key from [https://hub.ultralytics.com/settings?tab=api+keys](https://hub.ultralytics.com/settings?tab=api+keys). ## Example Usage in Python To access the YOLO Inference API with the specified model and API key using Python, you can use the following code: ```python import requests api_key = "API_KEY" model_id = "MODEL_ID" url = f"https://api.ultralytics.com/inference/v1?model={model_id}&key={api_key}" image_path = "image.jpg" with open(image_path, "rb") as image_file: files = {"image": image_file} response = requests.post(url, files=files) print(response.text) ``` In this example, replace `API_KEY` with your actual API key, `MODEL_ID` with the desired model ID, and `image.jpg` with the path to the image you want to analyze. ## Example Usage with CLI You can use the YOLO Inference API with the command-line interface (CLI) by utilizing the `curl` command. Replace `API_KEY` with your actual API key, `MODEL_ID` with the desired model ID, and `image.jpg` with the path to the image you want to analyze: ```commandline curl -X POST -F image=@image.jpg "https://api.ultralytics.com/inference/v1?model=MODEL_ID&key=API_KEY" ``` ## Passing Arguments This command sends a POST request to the YOLO Inference API with the specified `model` and `key` parameters in the URL, along with the image file specified by `@image.jpg`. Here's an example of passing the `model`, `key`, and `normalize` arguments via the API URL using the `requests` library in Python: ```python import requests api_key = "API_KEY" model_id = "MODEL_ID" url = "https://api.ultralytics.com/inference/v1" # Define your query parameters params = { "key": api_key, "model": model_id, "normalize": "True" } image_path = "image.jpg" with open(image_path, "rb") as image_file: files = {"image": image_file} response = requests.post(url, files=files, params=params) print(response.text) ``` In this example, the `params` dictionary contains the query parameters `key`, `model`, and `normalize`, which tells the API to return all values in normalized image coordinates from 0 to 1. The `normalize` parameter is set to `"True"` as a string since query parameters should be passed as strings. These query parameters are then passed to the `requests.post()` function. This will send the query parameters along with the file in the POST request. Make sure to consult the API documentation for the list of available arguments and their expected values. ## Return JSON format The YOLO Inference API returns a JSON list with the detection results. The format of the JSON list will be the same as the one produced locally by the `results[0].tojson()` command. The JSON list contains information about the detected objects, their coordinates, classes, and confidence scores. ### Detect Model Format YOLO detection models, such as `yolov8n.pt`, can return JSON responses from local inference, CLI API inference, and Python API inference. All of these methods produce the same JSON response format. !!! example "Detect Model JSON Response" === "Local" ```python from ultralytics import YOLO # Load model model = YOLO('yolov8n.pt') # Run inference results = model('image.jpg') # Print image.jpg results in JSON format print(results[0].tojson()) ``` === "CLI API" ```commandline curl -X POST -F image=@image.jpg https://api.ultralytics.com/inference/v1?model=MODEL_ID,key=API_KEY ``` === "Python API" ```python import requests api_key = "API_KEY" model_id = "MODEL_ID" url = "https://api.ultralytics.com/inference/v1" # Define your query parameters params = { "key": api_key, "model": model_id, } image_path = "image.jpg" with open(image_path, "rb") as image_file: files = {"image": image_file} response = requests.post(url, files=files, params=params) print(response.text) ``` === "JSON Response" ```json [ { "name": "person", "class": 0, "confidence": 0.8359682559967041, "box": { "x1": 0.08974208831787109, "y1": 0.27418340047200523, "x2": 0.8706787109375, "y2": 0.9887352837456598 } }, { "name": "person", "class": 0, "confidence": 0.8189555406570435, "box": { "x1": 0.5847355842590332, "y1": 0.05813225640190972, "x2": 0.8930277824401855, "y2": 0.9903111775716146 } }, { "name": "tie", "class": 27, "confidence": 0.2909725308418274, "box": { "x1": 0.3433395862579346, "y1": 0.6070465511745877, "x2": 0.40964522361755373, "y2": 0.9849439832899306 } } ] ``` ### Segment Model Format YOLO segmentation models, such as `yolov8n-seg.pt`, can return JSON responses from local inference, CLI API inference, and Python API inference. All of these methods produce the same JSON response format. !!! example "Segment Model JSON Response" === "Local" ```python from ultralytics import YOLO # Load model model = YOLO('yolov8n-seg.pt') # Run inference results = model('image.jpg') # Print image.jpg results in JSON format print(results[0].tojson()) ``` === "CLI API" ```commandline curl -X POST -F image=@image.jpg https://api.ultralytics.com/inference/v1?model=MODEL_ID,key=API_KEY ``` === "Python API" ```python import requests api_key = "API_KEY" model_id = "MODEL_ID" url = "https://api.ultralytics.com/inference/v1" # Define your query parameters params = { "key": api_key, "model": model_id, } image_path = "image.jpg" with open(image_path, "rb") as image_file: files = {"image": image_file} response = requests.post(url, files=files, params=params) print(response.text) ``` === "JSON Response" Note `segments` `x` and `y` lengths may vary from one object to another. Larger or more complex objects may have more segment points. ```json [ { "name": "person", "class": 0, "confidence": 0.856913149356842, "box": { "x1": 0.1064866065979004, "y1": 0.2798851860894097, "x2": 0.8738358497619629, "y2": 0.9894873725043403 }, "segments": { "x": [ 0.421875, 0.4203124940395355, 0.41718751192092896 ... ], "y": [ 0.2888889014720917, 0.2916666567325592, 0.2916666567325592 ... ] } }, { "name": "person", "class": 0, "confidence": 0.8512625694274902, "box": { "x1": 0.5757311820983887, "y1": 0.053943040635850696, "x2": 0.8960096359252929, "y2": 0.985154045952691 }, "segments": { "x": [ 0.7515624761581421, 0.75, 0.7437499761581421 ... ], "y": [ 0.0555555559694767, 0.05833333358168602, 0.05833333358168602 ... ] } }, { "name": "tie", "class": 27, "confidence": 0.6485961675643921, "box": { "x1": 0.33911995887756347, "y1": 0.6057066175672743, "x2": 0.4081430912017822, "y2": 0.9916408962673611 }, "segments": { "x": [ 0.37187498807907104, 0.37031251192092896, 0.3687500059604645 ... ], "y": [ 0.6111111044883728, 0.6138888597488403, 0.6138888597488403 ... ] } } ] ``` ### Pose Model Format YOLO pose models, such as `yolov8n-pose.pt`, can return JSON responses from local inference, CLI API inference, and Python API inference. All of these methods produce the same JSON response format. !!! example "Pose Model JSON Response" === "Local" ```python from ultralytics import YOLO # Load model model = YOLO('yolov8n-seg.pt') # Run inference results = model('image.jpg') # Print image.jpg results in JSON format print(results[0].tojson()) ``` === "CLI API" ```commandline curl -X POST -F image=@image.jpg https://api.ultralytics.com/inference/v1?model=MODEL_ID,key=API_KEY ``` === "Python API" ```python import requests api_key = "API_KEY" model_id = "MODEL_ID" url = "https://api.ultralytics.com/inference/v1" # Define your query parameters params = { "key": api_key, "model": model_id, } image_path = "image.jpg" with open(image_path, "rb") as image_file: files = {"image": image_file} response = requests.post(url, files=files, params=params) print(response.text) ``` === "JSON Response" Note COCO-keypoints pretrained models will have 17 human keypoints. The `visible` part of the keypoints indicates whether a keypoint is visible or obscured. Obscured keypoints may be outside the image or may not be visible, i.e. a person's eyes facing away from the camera. ```json [ { "name": "person", "class": 0, "confidence": 0.8439509868621826, "box": { "x1": 0.1125, "y1": 0.28194444444444444, "x2": 0.7953125, "y2": 0.9902777777777778 }, "keypoints": { "x": [ 0.5058594942092896, 0.5103894472122192, 0.4920862317085266 ... ], "y": [ 0.48964157700538635, 0.4643048942089081, 0.4465252459049225 ... ], "visible": [ 0.8726999163627625, 0.653947651386261, 0.9130823612213135 ... ] } }, { "name": "person", "class": 0, "confidence": 0.7474289536476135, "box": { "x1": 0.58125, "y1": 0.0625, "x2": 0.8859375, "y2": 0.9888888888888889 }, "keypoints": { "x": [ 0.778544008731842, 0.7976160049438477, 0.7530890107154846 ... ], "y": [ 0.27595141530036926, 0.2378823608160019, 0.23644638061523438 ... ], "visible": [ 0.8900790810585022, 0.789978563785553, 0.8974530100822449 ... ] } } ] ```