# Ultralytics YOLO 🚀, GPL-3.0 license import contextlib import inspect import logging.config import os import platform import sys import tempfile import threading import uuid from pathlib import Path from types import SimpleNamespace from typing import Union import cv2 import git import numpy as np import pandas as pd import torch import yaml # Constants FILE = Path(__file__).resolve() ROOT = FILE.parents[2] # YOLO DEFAULT_CFG_PATH = ROOT / "yolo/cfg/default.yaml" RANK = int(os.getenv('RANK', -1)) NUM_THREADS = min(8, max(1, os.cpu_count() - 1)) # number of YOLOv5 multiprocessing threads AUTOINSTALL = str(os.getenv('YOLO_AUTOINSTALL', True)).lower() == 'true' # global auto-install mode FONT = 'Arial.ttf' # https://ultralytics.com/assets/Arial.ttf VERBOSE = str(os.getenv('YOLO_VERBOSE', True)).lower() == 'true' # global verbose mode TQDM_BAR_FORMAT = '{l_bar}{bar:10}{r_bar}' # tqdm bar format LOGGING_NAME = 'ultralytics' HELP_MSG = \ """ Usage examples for running YOLOv8: 1. Install the ultralytics package: pip install ultralytics 2. Use the Python SDK: from ultralytics import YOLO # Load a model model = YOLO("yolov8n.yaml") # build a new model from scratch model = YOLO("yolov8n.pt") # load a pretrained model (recommended for training) # Use the model results = model.train(data="coco128.yaml", epochs=3) # train the model results = model.val() # evaluate model performance on the validation set results = model("https://ultralytics.com/images/bus.jpg") # predict on an image success = model.export(format="onnx") # export the model to ONNX format 3. Use the command line interface (CLI): YOLOv8 'yolo' CLI commands use the following syntax: yolo TASK MODE ARGS Where TASK (optional) is one of [detect, segment, classify] MODE (required) is one of [train, val, predict, export] ARGS (optional) are any number of custom 'arg=value' pairs like 'imgsz=320' that override defaults. See all ARGS at https://docs.ultralytics.com/cfg or with 'yolo cfg' - Train a detection model for 10 epochs with an initial learning_rate of 0.01 yolo detect train data=coco128.yaml model=yolov8n.pt epochs=10 lr0=0.01 - Predict a YouTube video using a pretrained segmentation model at image size 320: yolo segment predict model=yolov8n-seg.pt source=https://youtu.be/Zgi9g1ksQHc imgsz=320 - Val a pretrained detection model at batch-size 1 and image size 640: yolo detect val model=yolov8n.pt data=coco128.yaml batch=1 imgsz=640 - Export a YOLOv8n classification model to ONNX format at image size 224 by 128 (no TASK required) yolo export model=yolov8n-cls.pt format=onnx imgsz=224,128 - Run special commands: yolo help yolo checks yolo version yolo settings yolo copy-cfg yolo cfg Docs: https://docs.ultralytics.com Community: https://community.ultralytics.com GitHub: https://github.com/ultralytics/ultralytics """ # Settings torch.set_printoptions(linewidth=320, precision=5, profile='long') np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5 pd.options.display.max_columns = 10 cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader) os.environ['NUMEXPR_MAX_THREADS'] = str(NUM_THREADS) # NumExpr max threads os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8' # for deterministic training class IterableSimpleNamespace(SimpleNamespace): """ Iterable SimpleNamespace class to allow SimpleNamespace to be used with dict() and in for loops """ def __iter__(self): return iter(vars(self).items()) def __str__(self): return '\n'.join(f"{k}={v}" for k, v in vars(self).items()) # Default configuration with open(DEFAULT_CFG_PATH, errors='ignore') as f: DEFAULT_CFG_DICT = yaml.safe_load(f) DEFAULT_CFG_KEYS = DEFAULT_CFG_DICT.keys() DEFAULT_CFG = IterableSimpleNamespace(**DEFAULT_CFG_DICT) def is_colab(): """ Check if the current script is running inside a Google Colab notebook. Returns: bool: True if running inside a Colab notebook, False otherwise. """ # Check if the google.colab module is present in sys.modules return 'google.colab' in sys.modules def is_kaggle(): """ Check if the current script is running inside a Kaggle kernel. Returns: bool: True if running inside a Kaggle kernel, False otherwise. """ return os.environ.get('PWD') == '/kaggle/working' and os.environ.get('KAGGLE_URL_BASE') == 'https://www.kaggle.com' def is_jupyter_notebook(): """ Check if the current script is running inside a Jupyter Notebook. Verified on Colab, Jupyterlab, Kaggle, Paperspace. Returns: bool: True if running inside a Jupyter Notebook, False otherwise. """ # Check if the get_ipython function exists # (it does not exist when running as a standalone script) try: from IPython import get_ipython return get_ipython() is not None except ImportError: return False def is_docker() -> bool: """ Determine if the script is running inside a Docker container. Returns: bool: True if the script is running inside a Docker container, False otherwise. """ file = Path('/proc/self/cgroup') if file.exists(): with open(file) as f: return 'docker' in f.read() else: return False def is_git_directory() -> bool: """ Check if the current working directory is inside a git repository. Returns: bool: True if the current working directory is inside a git repository, False otherwise. """ try: git.Repo(search_parent_directories=True) # subprocess.run(["git", "rev-parse", "--git-dir"], capture_output=True, check=True) # CLI alternative return True except git.exc.InvalidGitRepositoryError: # subprocess.CalledProcessError: return False def is_pip_package(filepath: str = __name__) -> bool: """ Determines if the file at the given filepath is part of a pip package. Args: filepath (str): The filepath to check. Returns: bool: True if the file is part of a pip package, False otherwise. """ import importlib.util # Get the spec for the module spec = importlib.util.find_spec(filepath) # Return whether the spec is not None and the origin is not None (indicating it is a package) return spec is not None and spec.origin is not None def is_dir_writeable(dir_path: Union[str, Path]) -> bool: """ Check if a directory is writeable. Args: dir_path (str) or (Path): The path to the directory. Returns: bool: True if the directory is writeable, False otherwise. """ try: with tempfile.TemporaryFile(dir=dir_path): pass return True except OSError: return False def is_pytest_running(): """ Returns a boolean indicating if pytest is currently running or not :return: True if pytest is running, False otherwise """ try: import sys return "pytest" in sys.modules except ImportError: return False def get_git_root_dir(): """ Determines whether the current file is part of a git repository and if so, returns the repository root directory. If the current file is not part of a git repository, returns None. """ try: # output = subprocess.run(["git", "rev-parse", "--git-dir"], capture_output=True, check=True) # return Path(output.stdout.strip().decode('utf-8')).parent.resolve() # CLI alternative return Path(git.Repo(search_parent_directories=True).working_tree_dir) except git.exc.InvalidGitRepositoryError: # (subprocess.CalledProcessError, FileNotFoundError): return None def get_default_args(func): # Get func() default arguments signature = inspect.signature(func) return {k: v.default for k, v in signature.parameters.items() if v.default is not inspect.Parameter.empty} def get_user_config_dir(sub_dir='Ultralytics'): """ Get the user config directory. Args: sub_dir (str): The name of the subdirectory to create. Returns: Path: The path to the user config directory. """ # Get the operating system name os_name = platform.system() # Return the appropriate config directory for each operating system if os_name == 'Windows': path = Path.home() / 'AppData' / 'Roaming' / sub_dir elif os_name == 'Darwin': # macOS path = Path.home() / 'Library' / 'Application Support' / sub_dir elif os_name == 'Linux': path = Path.home() / '.config' / sub_dir else: raise ValueError(f'Unsupported operating system: {os_name}') # GCP and AWS lambda fix, only /tmp is writeable if not is_dir_writeable(str(path.parent)): path = Path('/tmp') / sub_dir # Create the subdirectory if it does not exist path.mkdir(parents=True, exist_ok=True) return path USER_CONFIG_DIR = get_user_config_dir() # Ultralytics settings dir def emojis(string=''): # Return platform-dependent emoji-safe version of string return string.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else string def colorstr(*input): # Colors a string https://en.wikipedia.org/wiki/ANSI_escape_code, i.e. colorstr('blue', 'hello world') *args, string = input if len(input) > 1 else ("blue", "bold", input[0]) # color arguments, string colors = { "black": "\033[30m", # basic colors "red": "\033[31m", "green": "\033[32m", "yellow": "\033[33m", "blue": "\033[34m", "magenta": "\033[35m", "cyan": "\033[36m", "white": "\033[37m", "bright_black": "\033[90m", # bright colors "bright_red": "\033[91m", "bright_green": "\033[92m", "bright_yellow": "\033[93m", "bright_blue": "\033[94m", "bright_magenta": "\033[95m", "bright_cyan": "\033[96m", "bright_white": "\033[97m", "end": "\033[0m", # misc "bold": "\033[1m", "underline": "\033[4m",} return "".join(colors[x] for x in args) + f"{string}" + colors["end"] def set_logging(name=LOGGING_NAME, verbose=True): # sets up logging for the given name rank = int(os.getenv('RANK', -1)) # rank in world for Multi-GPU trainings level = logging.INFO if verbose and rank in {-1, 0} else logging.ERROR logging.config.dictConfig({ "version": 1, "disable_existing_loggers": False, "formatters": { name: { "format": "%(message)s"}}, "handlers": { name: { "class": "logging.StreamHandler", "formatter": name, "level": level,}}, "loggers": { name: { "level": level, "handlers": [name], "propagate": False,}}}) class TryExcept(contextlib.ContextDecorator): # YOLOv8 TryExcept class. Usage: @TryExcept() decorator or 'with TryExcept():' context manager def __init__(self, msg='', verbose=True): self.msg = msg self.verbose = verbose def __enter__(self): pass def __exit__(self, exc_type, value, traceback): if self.verbose and value: print(emojis(f"{self.msg}{': ' if self.msg else ''}{value}")) return True def threaded(func): # Multi-threads a target function and returns thread. Usage: @threaded decorator def wrapper(*args, **kwargs): thread = threading.Thread(target=func, args=args, kwargs=kwargs, daemon=True) thread.start() return thread return wrapper def yaml_save(file='data.yaml', data=None): """ Save YAML data to a file. Args: file (str, optional): File name. Default is 'data.yaml'. data (dict, optional): Data to save in YAML format. Default is None. Returns: None: Data is saved to the specified file. """ file = Path(file) if not file.parent.exists(): # Create parent directories if they don't exist file.parent.mkdir(parents=True, exist_ok=True) with open(file, 'w') as f: # Dump data to file in YAML format, converting Path objects to strings yaml.safe_dump({k: str(v) if isinstance(v, Path) else v for k, v in data.items()}, f, sort_keys=False) def yaml_load(file='data.yaml', append_filename=False): """ Load YAML data from a file. Args: file (str, optional): File name. Default is 'data.yaml'. append_filename (bool): Add the YAML filename to the YAML dictionary. Default is False. Returns: dict: YAML data and file name. """ with open(file, errors='ignore') as f: # Add YAML filename to dict and return return {**yaml.safe_load(f), 'yaml_file': str(file)} if append_filename else yaml.safe_load(f) def yaml_print(yaml_file: Union[str, Path, dict]) -> None: """ Pretty prints a yaml file or a yaml-formatted dictionary. Args: yaml_file: The file path of the yaml file or a yaml-formatted dictionary. Returns: None """ yaml_dict = yaml_load(yaml_file) if isinstance(yaml_file, (str, Path)) else yaml_file dump = yaml.dump(yaml_dict, default_flow_style=False) LOGGER.info(f"Printing '{colorstr('bold', 'black', yaml_file)}'\n\n{dump}") def set_sentry(dsn=None): """ Initialize the Sentry SDK for error tracking and reporting if pytest is not currently running. """ if dsn and not is_pytest_running(): import sentry_sdk # noqa import ultralytics sentry_sdk.init( dsn=dsn, debug=False, traces_sample_rate=1.0, release=ultralytics.__version__, environment='production', # 'dev' or 'production' ignore_errors=[KeyboardInterrupt]) def get_settings(file=USER_CONFIG_DIR / 'settings.yaml', version='0.0.1'): """ Loads a global Ultralytics settings YAML file or creates one with default values if it does not exist. Args: file (Path): Path to the Ultralytics settings YAML file. Defaults to 'settings.yaml' in the USER_CONFIG_DIR. version (str): Settings version. If min settings version not met, new default settings will be saved. Returns: dict: Dictionary of settings key-value pairs. """ from ultralytics.yolo.utils.checks import check_version from ultralytics.yolo.utils.torch_utils import torch_distributed_zero_first is_git = is_git_directory() # True if ultralytics installed via git root = get_git_root_dir() if is_git else Path() datasets_root = (root.parent if (is_git and is_dir_writeable(root.parent)) else root).resolve() defaults = { 'datasets_dir': str(datasets_root / 'datasets'), # default datasets directory. 'weights_dir': str(root / 'weights'), # default weights directory. 'runs_dir': str(root / 'runs'), # default runs directory. 'sync': True, # sync analytics to help with YOLO development 'uuid': uuid.getnode(), # device UUID to align analytics 'settings_version': version} # Ultralytics settings version with torch_distributed_zero_first(RANK): if not file.exists(): yaml_save(file, defaults) settings = yaml_load(file) # Check that settings keys and types match defaults correct = settings.keys() == defaults.keys() \ and all(type(a) == type(b) for a, b in zip(settings.values(), defaults.values())) \ and check_version(settings['settings_version'], version) if not correct: LOGGER.warning('WARNING ⚠️ Ultralytics settings reset to defaults. ' '\nThis is normal and may be due to a recent ultralytics package update, ' 'but may have overwritten previous settings. ' f"\nYou may view and update settings directly in '{file}'") settings = defaults # merge **defaults with **settings (prefer **settings) yaml_save(file, settings) # save updated defaults return settings def set_settings(kwargs, file=USER_CONFIG_DIR / 'settings.yaml'): """ Function that runs on a first-time ultralytics package installation to set up global settings and create necessary directories. """ SETTINGS.update(kwargs) yaml_save(file, SETTINGS) # Run below code on utils init ----------------------------------------------------------------------------------------- # Set logger set_logging(LOGGING_NAME) # run before defining LOGGER LOGGER = logging.getLogger(LOGGING_NAME) # define globally (used in train.py, val.py, detect.py, etc.) if platform.system() == 'Windows': for fn in LOGGER.info, LOGGER.warning: setattr(LOGGER, fn.__name__, lambda x: fn(emojis(x))) # emoji safe logging # Check first-install steps PREFIX = colorstr("Ultralytics: ") SETTINGS = get_settings() DATASETS_DIR = Path(SETTINGS['datasets_dir']) # global datasets directory set_sentry()