import torch from ultralytics.yolo.engine.validator import BaseValidator class ClassificationValidator(BaseValidator): def init_metrics(self, model): self.correct = torch.tensor([], device=next(model.parameters()).device) def preprocess(self, batch): batch["img"] = batch["img"].to(self.device, non_blocking=True) batch["img"] = batch["img"].half() if self.args.half else batch["img"].float() batch["cls"] = batch["cls"].to(self.device) return batch def update_metrics(self, preds, batch): targets = batch["cls"] correct_in_batch = (targets[:, None] == preds).float() self.correct = torch.cat((self.correct, correct_in_batch)) def get_stats(self): acc = torch.stack((self.correct[:, 0], self.correct.max(1).values), dim=1) # (top1, top5) accuracy top1, top5 = acc.mean(0).tolist() return {"top1": top1, "top5": top5, "fitness": top5} @property def metric_keys(self): return ["top1", "top5"]