import hydra import torch from ultralytics.yolo import v8 from ultralytics.yolo.data import build_classification_dataloader from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG, BaseTrainer from ultralytics.yolo.utils.modeling.tasks import ClassificationModel class ClassificationTrainer(BaseTrainer): def set_model_attributes(self): self.model.names = self.data["names"] def load_model(self, model_cfg, weights, data): # TODO: why treat clf models as unique. We should have clf yamls? if weights and not weights.__class__.__name__.startswith("yolo"): # torchvision model = weights else: model = ClassificationModel(model_cfg, weights, data["nc"]) ClassificationModel.reshape_outputs(model, data["nc"]) return model def get_dataloader(self, dataset_path, batch_size, rank=0, mode="train"): return build_classification_dataloader(path=dataset_path, imgsz=self.args.img_size, batch_size=batch_size, rank=rank) def preprocess_batch(self, batch): batch["img"] = batch["img"].to(self.device) batch["cls"] = batch["cls"].to(self.device) return batch def get_validator(self): return v8.classify.ClassificationValidator(self.test_loader, self.device, logger=self.console) def criterion(self, preds, batch): loss = torch.nn.functional.cross_entropy(preds, batch["cls"]) return loss, loss @hydra.main(version_base=None, config_path=DEFAULT_CONFIG.parent, config_name=DEFAULT_CONFIG.name) def train(cfg): cfg.model = cfg.model or "resnet18" cfg.data = cfg.data or "imagenette160" # or yolo.ClassificationDataset("mnist") trainer = ClassificationTrainer(cfg) trainer.train() if __name__ == "__main__": """ CLI usage: python ultralytics/yolo/v8/classify/train.py model=resnet18 data=imagenette160 epochs=1 img_size=224 TODO: Direct cli support, i.e, yolov8 classify_train args.epochs 10 """ train()