import logging from pathlib import Path import torch from omegaconf import OmegaConf from tqdm import tqdm from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG from ultralytics.yolo.utils import TQDM_BAR_FORMAT from ultralytics.yolo.utils.files import increment_path from ultralytics.yolo.utils.ops import Profile from ultralytics.yolo.utils.torch_utils import de_parallel, select_device class BaseValidator: """ Base validator class. """ def __init__(self, dataloader, save_dir=None, pbar=None, logger=None, args=None): self.dataloader = dataloader self.pbar = pbar self.logger = logger or logging.getLogger() self.args = args or OmegaConf.load(DEFAULT_CONFIG) self.device = select_device(self.args.device, dataloader.batch_size) self.save_dir = save_dir if save_dir is not None else \ increment_path(Path(self.args.project) / self.args.name, exist_ok=self.args.exist_ok) self.cuda = self.device.type != 'cpu' self.batch_i = None self.training = True def __call__(self, trainer=None, model=None): """ Supports validation of a pre-trained model if passed or a model being trained if trainer is passed (trainer gets priority). """ self.training = trainer is not None if self.training: model = trainer.ema.ema or trainer.model self.args.half &= self.device.type != 'cpu' model = model.half() if self.args.half else model.float() loss = torch.zeros_like(trainer.loss_items, device=trainer.device) else: # TODO: handle this when detectMultiBackend is supported assert model is not None, "Either trainer or model is needed for validation" # model = DetectMultiBacked(model) # TODO: implement init_model_attributes() model.eval() dt = Profile(), Profile(), Profile(), Profile() n_batches = len(self.dataloader) desc = self.get_desc() # NOTE: keeping this `not self.training` in tqdm will eliminate pbar after finishing segmantation evaluation during training, # so I removed it, not sure if this will affect classification task cause I saw we use this arg in yolov5/classify/val.py. # bar = tqdm(self.dataloader, desc, n_batches, not self.training, bar_format=TQDM_BAR_FORMAT) bar = tqdm(self.dataloader, desc, n_batches, bar_format=TQDM_BAR_FORMAT) self.init_metrics(de_parallel(model)) with torch.no_grad(): for batch_i, batch in enumerate(bar): self.batch_i = batch_i # pre-process with dt[0]: batch = self.preprocess(batch) # inference with dt[1]: preds = model(batch["img"]) # TODO: remember to add native augmentation support when implementing model, like: # preds, train_out = model(im, augment=augment) # loss with dt[2]: if self.training: loss += trainer.criterion(preds, batch)[1] # pre-process predictions with dt[3]: preds = self.postprocess(preds) self.update_metrics(preds, batch) if self.args.plots and batch_i < 3: self.plot_val_samples(batch, batch_i) self.plot_predictions(batch, preds, batch_i) stats = self.get_stats() self.check_stats(stats) self.print_results() # print speeds if not self.training: t = tuple(x.t / len(self.dataloader.dataset) * 1E3 for x in dt) # speeds per image # shape = (self.dataloader.batch_size, 3, imgsz, imgsz) self.logger.info( 'Speed: %.1fms pre-process, %.1fms inference, %.1fms loss, %.1fms post-process per image at shape ' % t) if self.training: model.float() # TODO: implement save json return stats | trainer.label_loss_items(loss.cpu() / len(self.dataloader), prefix="val") \ if self.training else stats def preprocess(self, batch): return batch def postprocess(self, preds): return preds def init_metrics(self): pass def update_metrics(self, preds, batch): pass def get_stats(self): return {} def check_stats(self, stats): pass def print_results(self): pass def get_desc(self): pass @property def metric_keys(self): return [] # TODO: may need to put these following functions into callback def plot_val_samples(self, batch, ni): pass def plot_predictions(self, batch, preds, ni): pass