""" Simple training loop; Boilerplate that could apply to any arbitrary neural network, """ import os import time from collections import defaultdict from copy import deepcopy from datetime import datetime from pathlib import Path from typing import Dict, Union import numpy as np import torch import torch.distributed as dist import torch.multiprocessing as mp import torch.nn as nn from omegaconf import DictConfig, OmegaConf from torch.cuda import amp from torch.nn.parallel import DistributedDataParallel as DDP from torch.optim import lr_scheduler from tqdm import tqdm import ultralytics.yolo.utils as utils import ultralytics.yolo.utils.callbacks as callbacks from ultralytics.yolo.data.utils import check_dataset, check_dataset_yaml from ultralytics.yolo.utils import LOGGER, ROOT, TQDM_BAR_FORMAT, colorstr from ultralytics.yolo.utils.checks import print_args from ultralytics.yolo.utils.files import increment_path, save_yaml from ultralytics.yolo.utils.modeling import get_model from ultralytics.yolo.utils.torch_utils import ModelEMA, de_parallel, init_seeds, one_cycle, strip_optimizer DEFAULT_CONFIG = ROOT / "yolo/utils/configs/default.yaml" RANK = int(os.getenv('RANK', -1)) class BaseTrainer: def __init__(self, config=DEFAULT_CONFIG, overrides={}): self.args = self._get_config(config, overrides) init_seeds(self.args.seed + 1 + RANK, deterministic=self.args.deterministic) self.console = LOGGER self.validator = None self.model = None self.callbacks = defaultdict(list) self.save_dir = increment_path(Path(self.args.project) / self.args.name, exist_ok=self.args.exist_ok) self.wdir = self.save_dir / 'weights' # weights dir self.wdir.mkdir(parents=True, exist_ok=True) # make dir self.last, self.best = self.wdir / 'last.pt', self.wdir / 'best.pt' # checkpoint paths self.batch_size = self.args.batch_size self.epochs = self.args.epochs print_args(dict(self.args)) # Save run settings save_yaml(self.save_dir / 'args.yaml', OmegaConf.to_container(self.args, resolve=True)) # device self.device = utils.torch_utils.select_device(self.args.device, self.batch_size) self.scaler = amp.GradScaler(enabled=self.device.type != 'cpu') # Model and Dataloaders. self.data = self.args.data if self.data.endswith(".yaml"): self.data = check_dataset_yaml(self.data) else: self.data = check_dataset(self.data) self.trainset, self.testset = self.get_dataset(self.data) if self.args.model: self.model = self.get_model(self.args.model) self.ema = None # Optimization utils init self.lf = None self.scheduler = None # epoch level metrics self.best_fitness = None self.fitness = None self.loss = None self.tloss = None self.csv = self.save_dir / 'results.csv' for callback, func in callbacks.default_callbacks.items(): self.add_callback(callback, func) callbacks.add_integration_callbacks(self) def _get_config(self, config: Union[str, DictConfig], overrides: Union[str, Dict] = {}): """ Accepts yaml file name or DictConfig containing experiment configuration. Returns training args namespace :param config: Optional file name or DictConfig object """ if isinstance(config, (str, Path)): config = OmegaConf.load(config) elif isinstance(config, Dict): config = OmegaConf.create(config) # override if isinstance(overrides, str): overrides = OmegaConf.load(overrides) elif isinstance(overrides, Dict): overrides = OmegaConf.create(overrides) return OmegaConf.merge(config, overrides) def add_callback(self, onevent: str, callback): """ appends the given callback """ self.callbacks[onevent].append(callback) def set_callback(self, onevent: str, callback): """ overrides the existing callbacks with the given callback """ self.callbacks[onevent] = [callback] def trigger_callbacks(self, onevent: str): for callback in self.callbacks.get(onevent, []): callback(self) def train(self): world_size = torch.cuda.device_count() if world_size > 1: mp.spawn(self._do_train, args=(world_size,), nprocs=world_size, join=True) else: # self._do_train(int(os.getenv("RANK", -1)), world_size) self._do_train() def _setup_ddp(self, rank, world_size): os.environ['MASTER_ADDR'] = 'localhost' os.environ['MASTER_PORT'] = '9020' torch.cuda.set_device(rank) self.device = torch.device('cuda', rank) self.console.info(f"RANK - WORLD_SIZE - DEVICE: {rank} - {world_size} - {self.device} ") dist.init_process_group("nccl" if dist.is_nccl_available() else "gloo", rank=rank, world_size=world_size) self.model = self.model.to(self.device) self.model = DDP(self.model, device_ids=[rank]) def _setup_train(self, rank, world_size): """ Builds dataloaders and optimizer on correct rank process """ # Optimizer self.set_model_attributes() self.accumulate = max(round(self.args.nbs / self.batch_size), 1) # accumulate loss before optimizing self.args.weight_decay *= self.batch_size * self.accumulate / self.args.nbs # scale weight_decay self.optimizer = build_optimizer(model=self.model, name=self.args.optimizer, lr=self.args.lr0, momentum=self.args.momentum, decay=self.args.weight_decay) # Scheduler if self.args.cos_lr: self.lf = one_cycle(1, self.args.lrf, self.epochs) # cosine 1->hyp['lrf'] else: self.lf = lambda x: (1 - x / self.epochs) * (1.0 - self.args.lrf) + self.args.lrf # linear self.scheduler = lr_scheduler.LambdaLR(self.optimizer, lr_lambda=self.lf) # dataloaders batch_size = self.batch_size // world_size self.train_loader = self.get_dataloader(self.trainset, batch_size=batch_size, rank=rank, mode="train") if rank in {0, -1}: self.test_loader = self.get_dataloader(self.testset, batch_size=batch_size * 2, rank=-1, mode="val") validator = self.get_validator() # init metric, for plot_results metric_keys = validator.metric_keys + self.label_loss_items(prefix="val") self.metrics = dict(zip(metric_keys, [0] * len(metric_keys))) self.validator = validator self.ema = ModelEMA(self.model) def _do_train(self, rank=-1, world_size=1): if world_size > 1: self._setup_ddp(rank, world_size) else: self.model = self.model.to(self.device) self.trigger_callbacks("before_train") self._setup_train(rank, world_size) self.epoch = 0 self.epoch_time = None self.epoch_time_start = time.time() self.train_time_start = time.time() nb = len(self.train_loader) # number of batches nw = max(round(self.args.warmup_epochs * nb), 100) # number of warmup iterations last_opt_step = -1 for epoch in range(self.epochs): self.trigger_callbacks("on_epoch_start") self.model.train() if rank != -1: self.train_loader.sampler.set_epoch(epoch) pbar = enumerate(self.train_loader) if rank in {-1, 0}: self.console.info(self.progress_string()) pbar = tqdm(enumerate(self.train_loader), total=len(self.train_loader), bar_format=TQDM_BAR_FORMAT) self.tloss = None self.optimizer.zero_grad() for i, batch in pbar: self.trigger_callbacks("on_batch_start") # forward batch = self.preprocess_batch(batch) # warmup ni = i + nb * epoch if ni <= nw: xi = [0, nw] # x interp self.accumulate = max(1, np.interp(ni, xi, [1, self.args.nbs / self.batch_size]).round()) for j, x in enumerate(self.optimizer.param_groups): # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0 x['lr'] = np.interp( ni, xi, [self.args.warmup_bias_lr if j == 0 else 0.0, x['initial_lr'] * self.lf(epoch)]) if 'momentum' in x: x['momentum'] = np.interp(ni, xi, [self.args.warmup_momentum, self.args.momentum]) preds = self.model(batch["img"]) self.loss, self.loss_items = self.criterion(preds, batch) if rank != -1: self.loss *= world_size self.tloss = (self.tloss * i + self.loss_items) / (i + 1) if self.tloss is not None \ else self.loss_items # backward self.scaler.scale(self.loss).backward() # optimize if ni - last_opt_step >= self.accumulate: self.optimizer_step() last_opt_step = ni # log mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G' # (GB) loss_len = self.tloss.shape[0] if len(self.tloss.size()) else 1 losses = self.tloss if loss_len > 1 else torch.unsqueeze(self.tloss, 0) if rank in {-1, 0}: pbar.set_description( ('%11s' * 2 + '%11.4g' * (2 + loss_len)) % (f'{epoch + 1}/{self.epochs}', mem, *losses, batch["cls"].shape[0], batch["img"].shape[-1])) self.trigger_callbacks('on_batch_end') if self.args.plots and ni < 3: self.plot_training_samples(batch, ni) lr = {f"lr{ir}": x['lr'] for ir, x in enumerate(self.optimizer.param_groups)} # for loggers self.scheduler.step() if rank in [-1, 0]: # validation self.trigger_callbacks('on_val_start') self.ema.update_attr(self.model, include=['yaml', 'nc', 'args', 'names', 'stride', 'class_weights']) final_epoch = (epoch + 1 == self.epochs) if not self.args.noval or final_epoch: self.metrics, self.fitness = self.validate() self.trigger_callbacks('on_val_end') log_vals = self.label_loss_items(self.tloss) | self.metrics | lr self.save_metrics(metrics=log_vals) # save model if (not self.args.nosave) or (self.epoch + 1 == self.epochs): self.save_model() self.trigger_callbacks('on_model_save') self.epoch += 1 tnow = time.time() self.epoch_time = tnow - self.epoch_time_start self.epoch_time_start = tnow # TODO: termination condition if rank in [-1, 0]: # do the last evaluation with best.pt self.final_eval() if self.args.plots: self.plot_metrics() self.log(f"\nTraining complete ({(time.time() - self.train_time_start) / 3600:.3f} hours)") self.trigger_callbacks('on_train_end') dist.destroy_process_group() if world_size != 1 else None torch.cuda.empty_cache() def save_model(self): ckpt = { 'epoch': self.epoch, 'best_fitness': self.best_fitness, 'model': deepcopy(de_parallel(self.model)).half(), 'ema': deepcopy(self.ema.ema).half(), 'updates': self.ema.updates, 'optimizer': self.optimizer.state_dict(), 'train_args': self.args, 'date': datetime.now().isoformat()} # Save last, best and delete torch.save(ckpt, self.last) if self.best_fitness == self.fitness: torch.save(ckpt, self.best) del ckpt def get_dataset(self, data): """ Get train, val path from data dict if it exists. Returns None if data format is not recognized """ return data["train"], data["val"] def get_model(self, model: Union[str, Path]): """ load/create/download model for any task """ pretrained = not str(model).endswith(".yaml") return self.load_model(model_cfg=None if pretrained else model, weights=get_model(model) if pretrained else None, data=self.data) # model def optimizer_step(self): self.scaler.unscale_(self.optimizer) # unscale gradients torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=10.0) # clip gradients self.scaler.step(self.optimizer) self.scaler.update() self.optimizer.zero_grad() if self.ema: self.ema.update(self.model) def preprocess_batch(self, batch): """ Allows custom preprocessing model inputs and ground truths depending on task type """ return batch def validate(self): """ Runs validation on test set using self.validator. # TODO: discuss validator class. Enforce that a validator metrics dict should contain "fitness" metric. """ metrics = self.validator(self) fitness = metrics.pop("fitness", -self.loss.detach().cpu().numpy()) # use loss as fitness measure if not found if not self.best_fitness or self.best_fitness < fitness: self.best_fitness = self.fitness return metrics, fitness def log(self, text, rank=-1): """ Logs the given text to given ranks process if provided, otherwise logs to all ranks :param text: text to log :param rank: List[Int] """ if rank in {-1, 0}: self.console.info(text) def load_model(self, model_cfg, weights, data): raise NotImplementedError("This task trainer doesn't support loading cfg files") def get_validator(self): raise NotImplementedError("get_validator function not implemented in trainer") def get_dataloader(self, dataset_path, batch_size=16, rank=0): """ Returns dataloader derived from torch.data.Dataloader """ raise NotImplementedError("get_dataloader function not implemented in trainer") def criterion(self, preds, batch): """ Returns loss and individual loss items as Tensor """ raise NotImplementedError("criterion function not implemented in trainer") def label_loss_items(self, loss_items=None, prefix="train"): """ Returns a loss dict with labelled training loss items tensor """ # Not needed for classification but necessary for segmentation & detection return {"loss": loss_items} if loss_items is not None else ["loss"] def set_model_attributes(self): """ To set or update model parameters before training. """ pass def build_targets(self, preds, targets): pass def progress_string(self): return "" # TODO: may need to put these following functions into callback def plot_training_samples(self, batch, ni): pass def save_metrics(self, metrics): keys, vals = list(metrics.keys()), list(metrics.values()) n = len(metrics) + 1 # number of cols s = '' if self.csv.exists() else (('%23s,' * n % tuple(['epoch'] + keys)).rstrip(',') + '\n') # header with open(self.csv, 'a') as f: f.write(s + ('%23.5g,' * n % tuple([self.epoch] + vals)).rstrip(',') + '\n') def plot_metrics(self): pass def final_eval(self): # TODO: need standalone evaluator to do this for f in self.last, self.best: if f.exists(): strip_optimizer(f) # strip optimizers if f is self.best: self.console.info(f'\nValidating {f}...') def build_optimizer(model, name='Adam', lr=0.001, momentum=0.9, decay=1e-5): # TODO: 1. docstring with example? 2. Move this inside Trainer? or utils? # YOLOv5 3-param group optimizer: 0) weights with decay, 1) weights no decay, 2) biases no decay g = [], [], [] # optimizer parameter groups bn = tuple(v for k, v in nn.__dict__.items() if 'Norm' in k) # normalization layers, i.e. BatchNorm2d() for v in model.modules(): if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter): # bias (no decay) g[2].append(v.bias) if isinstance(v, bn): # weight (no decay) g[1].append(v.weight) elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter): # weight (with decay) g[0].append(v.weight) if name == 'Adam': optimizer = torch.optim.Adam(g[2], lr=lr, betas=(momentum, 0.999)) # adjust beta1 to momentum elif name == 'AdamW': optimizer = torch.optim.AdamW(g[2], lr=lr, betas=(momentum, 0.999), weight_decay=0.0) elif name == 'RMSProp': optimizer = torch.optim.RMSprop(g[2], lr=lr, momentum=momentum) elif name == 'SGD': optimizer = torch.optim.SGD(g[2], lr=lr, momentum=momentum, nesterov=True) else: raise NotImplementedError(f'Optimizer {name} not implemented.') optimizer.add_param_group({'params': g[0], 'weight_decay': decay}) # add g0 with weight_decay optimizer.add_param_group({'params': g[1], 'weight_decay': 0.0}) # add g1 (BatchNorm2d weights) LOGGER.info(f"{colorstr('optimizer:')} {type(optimizer).__name__}(lr={lr}) with parameter groups " f"{len(g[1])} weight(decay=0.0), {len(g[0])} weight(decay={decay}), {len(g[2])} bias") return optimizer # Dummy validator def val(trainer: BaseTrainer): trainer.console.info("validating") return {"metric_1": 0.1, "metric_2": 0.2, "fitness": 1}