Instance segmentation goes a step further than object detection and involves identifying individual objects in an image and segmenting them from the rest of the image. The output of an instance segmentation model is a set of masks or contours that outline each object in the image, along with class labels and confidence scores for each object. Instance segmentation is useful when you need to know not only where objects are in an image, but also what their exact shape is. !!! tip "Tip" YOLOv8 _segmentation_ models use the `-seg` suffix, i.e. `yolov8n-seg.pt` and are pretrained on COCO. [Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models/v8/seg){.md-button .md-button--primary} ## Train Train YOLOv8n-seg on the COCO128-seg dataset for 100 epochs at image size 640. For a full list of available arguments see the [Configuration](../cfg.md) page. !!! example "" === "Python" ```python from ultralytics import YOLO # Load a model model = YOLO("yolov8n-seg.yaml") # build a new model from scratch model = YOLO("yolov8n-seg.pt") # load a pretrained model (recommended for training) # Train the model model.train(data="coco128-seg.yaml", epochs=100, imgsz=640) ``` === "CLI" ```bash yolo segment train data=coco128-seg.yaml model=yolov8n-seg.pt epochs=100 imgsz=640 ``` ## Val Validate trained YOLOv8n-seg model accuracy on the COCO128-seg dataset. No argument need to passed as the `model` retains it's training `data` and arguments as model attributes. !!! example "" === "Python" ```python from ultralytics import YOLO # Load a model model = YOLO("yolov8n-seg.pt") # load an official model model = YOLO("path/to/best.pt") # load a custom model # Validate the model metrics = model.val() # no arguments needed, dataset and settings remembered metrics.box.map # map50-95(B) metrics.box.map50 # map50(B) metrics.box.map75 # map75(B) metrics.box.maps # a list contains map50-95(B) of each category metrics.seg.map # map50-95(M) metrics.seg.map50 # map50(M) metrics.seg.map75 # map75(M) metrics.seg.maps # a list contains map50-95(M) of each category ``` === "CLI" ```bash yolo segment val model=yolov8n-seg.pt # val official model yolo segment val model=path/to/best.pt # val custom model ``` ## Predict Use a trained YOLOv8n-seg model to run predictions on images. !!! example "" === "Python" ```python from ultralytics import YOLO # Load a model model = YOLO("yolov8n-seg.pt") # load an official model model = YOLO("path/to/best.pt") # load a custom model # Predict with the model results = model("https://ultralytics.com/images/bus.jpg") # predict on an image ``` === "CLI" ```bash yolo segment predict model=yolov8n-seg.pt source="https://ultralytics.com/images/bus.jpg" # predict with official model yolo segment predict model=path/to/best.pt source="https://ultralytics.com/images/bus.jpg" # predict with custom model ``` Read more details of `predict` in our [Predict](https://docs.ultralytics.com/predict/) page. ## Export Export a YOLOv8n-seg model to a different format like ONNX, CoreML, etc. !!! example "" === "Python" ```python from ultralytics import YOLO # Load a model model = YOLO("yolov8n-seg.pt") # load an official model model = YOLO("path/to/best.pt") # load a custom trained # Export the model model.export(format="onnx") ``` === "CLI" ```bash yolo export model=yolov8n-seg.pt format=onnx # export official model yolo export model=path/to/best.pt format=onnx # export custom trained model ``` Available YOLOv8-seg export formats include: | Format | `format=` | Model | Metadata | |--------------------------------------------------------------------|---------------|-------------------------------|----------| | [PyTorch](https://pytorch.org/) | - | `yolov8n-seg.pt` | ✅ | | [TorchScript](https://pytorch.org/docs/stable/jit.html) | `torchscript` | `yolov8n-seg.torchscript` | ✅ | | [ONNX](https://onnx.ai/) | `onnx` | `yolov8n-seg.onnx` | ✅ | | [OpenVINO](https://docs.openvino.ai/latest/index.html) | `openvino` | `yolov8n-seg_openvino_model/` | ✅ | | [TensorRT](https://developer.nvidia.com/tensorrt) | `engine` | `yolov8n-seg.engine` | ✅ | | [CoreML](https://github.com/apple/coremltools) | `coreml` | `yolov8n-seg.mlmodel` | ✅ | | [TF SavedModel](https://www.tensorflow.org/guide/saved_model) | `saved_model` | `yolov8n-seg_saved_model/` | ✅ | | [TF GraphDef](https://www.tensorflow.org/api_docs/python/tf/Graph) | `pb` | `yolov8n-seg.pb` | ❌ | | [TF Lite](https://www.tensorflow.org/lite) | `tflite` | `yolov8n-seg.tflite` | ✅ | | [TF Edge TPU](https://coral.ai/docs/edgetpu/models-intro/) | `edgetpu` | `yolov8n-seg_edgetpu.tflite` | ✅ | | [TF.js](https://www.tensorflow.org/js) | `tfjs` | `yolov8n-seg_web_model/` | ✅ | | [PaddlePaddle](https://github.com/PaddlePaddle) | `paddle` | `yolov8n-seg_paddle_model/` | ✅ |