# Ultralytics YOLO 🚀, AGPL-3.0 license from ultralytics.utils import TESTS_RUNNING from ultralytics.utils.torch_utils import model_info_for_loggers try: import wandb as wb assert hasattr(wb, '__version__') assert not TESTS_RUNNING # do not log pytest except (ImportError, AssertionError): wb = None _processed_plots = {} def _log_plots(plots, step): for name, params in plots.items(): timestamp = params['timestamp'] if _processed_plots.get(name, None) != timestamp: wb.run.log({name.stem: wb.Image(str(name))}, step=step) _processed_plots[name] = timestamp def on_pretrain_routine_start(trainer): """Initiate and start project if module is present.""" wb.run or wb.init(project=trainer.args.project or 'YOLOv8', name=trainer.args.name, config=vars(trainer.args)) def on_fit_epoch_end(trainer): """Logs training metrics and model information at the end of an epoch.""" wb.run.log(trainer.metrics, step=trainer.epoch + 1) _log_plots(trainer.plots, step=trainer.epoch + 1) _log_plots(trainer.validator.plots, step=trainer.epoch + 1) if trainer.epoch == 0: wb.run.log(model_info_for_loggers(trainer), step=trainer.epoch + 1) def on_train_epoch_end(trainer): """Log metrics and save images at the end of each training epoch.""" wb.run.log(trainer.label_loss_items(trainer.tloss, prefix='train'), step=trainer.epoch + 1) wb.run.log(trainer.lr, step=trainer.epoch + 1) if trainer.epoch == 1: _log_plots(trainer.plots, step=trainer.epoch + 1) def on_train_end(trainer): """Save the best model as an artifact at end of training.""" _log_plots(trainer.validator.plots, step=trainer.epoch + 1) _log_plots(trainer.plots, step=trainer.epoch + 1) art = wb.Artifact(type='model', name=f'run_{wb.run.id}_model') if trainer.best.exists(): art.add_file(trainer.best) wb.run.log_artifact(art, aliases=['best']) callbacks = { 'on_pretrain_routine_start': on_pretrain_routine_start, 'on_train_epoch_end': on_train_epoch_end, 'on_fit_epoch_end': on_fit_epoch_end, 'on_train_end': on_train_end} if wb else {}