# Ultralytics YOLO 🚀, AGPL-3.0 license import numpy as np import scipy from scipy.spatial.distance import cdist from .kalman_filter import chi2inv95 try: import lap # for linear_assignment assert lap.__version__ # verify package is not directory except (ImportError, AssertionError, AttributeError): from ultralytics.yolo.utils.checks import check_requirements check_requirements('lap>=0.4') # install import lap def merge_matches(m1, m2, shape): O, P, Q = shape m1 = np.asarray(m1) m2 = np.asarray(m2) M1 = scipy.sparse.coo_matrix((np.ones(len(m1)), (m1[:, 0], m1[:, 1])), shape=(O, P)) M2 = scipy.sparse.coo_matrix((np.ones(len(m2)), (m2[:, 0], m2[:, 1])), shape=(P, Q)) mask = M1 * M2 match = mask.nonzero() match = list(zip(match[0], match[1])) unmatched_O = tuple(set(range(O)) - {i for i, j in match}) unmatched_Q = tuple(set(range(Q)) - {j for i, j in match}) return match, unmatched_O, unmatched_Q def _indices_to_matches(cost_matrix, indices, thresh): matched_cost = cost_matrix[tuple(zip(*indices))] matched_mask = (matched_cost <= thresh) matches = indices[matched_mask] unmatched_a = tuple(set(range(cost_matrix.shape[0])) - set(matches[:, 0])) unmatched_b = tuple(set(range(cost_matrix.shape[1])) - set(matches[:, 1])) return matches, unmatched_a, unmatched_b def linear_assignment(cost_matrix, thresh, use_lap=True): # Linear assignment implementations with scipy and lap.lapjv if cost_matrix.size == 0: return np.empty((0, 2), dtype=int), tuple(range(cost_matrix.shape[0])), tuple(range(cost_matrix.shape[1])) if use_lap: _, x, y = lap.lapjv(cost_matrix, extend_cost=True, cost_limit=thresh) matches = [[ix, mx] for ix, mx in enumerate(x) if mx >= 0] unmatched_a = np.where(x < 0)[0] unmatched_b = np.where(y < 0)[0] else: # Scipy linear sum assignment is NOT working correctly, DO NOT USE y, x = scipy.optimize.linear_sum_assignment(cost_matrix) # row y, col x matches = np.asarray([[i, x] for i, x in enumerate(x) if cost_matrix[i, x] <= thresh]) unmatched = np.ones(cost_matrix.shape) for i, xi in matches: unmatched[i, xi] = 0.0 unmatched_a = np.where(unmatched.all(1))[0] unmatched_b = np.where(unmatched.all(0))[0] return matches, unmatched_a, unmatched_b def ious(atlbrs, btlbrs): """ Compute cost based on IoU :type atlbrs: list[tlbr] | np.ndarray :type atlbrs: list[tlbr] | np.ndarray :rtype ious np.ndarray """ ious = np.zeros((len(atlbrs), len(btlbrs)), dtype=np.float32) if ious.size == 0: return ious ious = bbox_ious(np.ascontiguousarray(atlbrs, dtype=np.float32), np.ascontiguousarray(btlbrs, dtype=np.float32)) return ious def iou_distance(atracks, btracks): """ Compute cost based on IoU :type atracks: list[STrack] :type btracks: list[STrack] :rtype cost_matrix np.ndarray """ if (len(atracks) > 0 and isinstance(atracks[0], np.ndarray)) \ or (len(btracks) > 0 and isinstance(btracks[0], np.ndarray)): atlbrs = atracks btlbrs = btracks else: atlbrs = [track.tlbr for track in atracks] btlbrs = [track.tlbr for track in btracks] _ious = ious(atlbrs, btlbrs) return 1 - _ious # cost matrix def v_iou_distance(atracks, btracks): """ Compute cost based on IoU :type atracks: list[STrack] :type btracks: list[STrack] :rtype cost_matrix np.ndarray """ if (len(atracks) > 0 and isinstance(atracks[0], np.ndarray)) \ or (len(btracks) > 0 and isinstance(btracks[0], np.ndarray)): atlbrs = atracks btlbrs = btracks else: atlbrs = [track.tlwh_to_tlbr(track.pred_bbox) for track in atracks] btlbrs = [track.tlwh_to_tlbr(track.pred_bbox) for track in btracks] _ious = ious(atlbrs, btlbrs) return 1 - _ious # cost matrix def embedding_distance(tracks, detections, metric='cosine'): """ :param tracks: list[STrack] :param detections: list[BaseTrack] :param metric: :return: cost_matrix np.ndarray """ cost_matrix = np.zeros((len(tracks), len(detections)), dtype=np.float32) if cost_matrix.size == 0: return cost_matrix det_features = np.asarray([track.curr_feat for track in detections], dtype=np.float32) # for i, track in enumerate(tracks): # cost_matrix[i, :] = np.maximum(0.0, cdist(track.smooth_feat.reshape(1,-1), det_features, metric)) track_features = np.asarray([track.smooth_feat for track in tracks], dtype=np.float32) cost_matrix = np.maximum(0.0, cdist(track_features, det_features, metric)) # Normalized features return cost_matrix def gate_cost_matrix(kf, cost_matrix, tracks, detections, only_position=False): if cost_matrix.size == 0: return cost_matrix gating_dim = 2 if only_position else 4 gating_threshold = chi2inv95[gating_dim] measurements = np.asarray([det.to_xyah() for det in detections]) for row, track in enumerate(tracks): gating_distance = kf.gating_distance(track.mean, track.covariance, measurements, only_position) cost_matrix[row, gating_distance > gating_threshold] = np.inf return cost_matrix def fuse_motion(kf, cost_matrix, tracks, detections, only_position=False, lambda_=0.98): if cost_matrix.size == 0: return cost_matrix gating_dim = 2 if only_position else 4 gating_threshold = chi2inv95[gating_dim] measurements = np.asarray([det.to_xyah() for det in detections]) for row, track in enumerate(tracks): gating_distance = kf.gating_distance(track.mean, track.covariance, measurements, only_position, metric='maha') cost_matrix[row, gating_distance > gating_threshold] = np.inf cost_matrix[row] = lambda_ * cost_matrix[row] + (1 - lambda_) * gating_distance return cost_matrix def fuse_iou(cost_matrix, tracks, detections): if cost_matrix.size == 0: return cost_matrix reid_sim = 1 - cost_matrix iou_dist = iou_distance(tracks, detections) iou_sim = 1 - iou_dist fuse_sim = reid_sim * (1 + iou_sim) / 2 # det_scores = np.array([det.score for det in detections]) # det_scores = np.expand_dims(det_scores, axis=0).repeat(cost_matrix.shape[0], axis=0) return 1 - fuse_sim # fuse cost def fuse_score(cost_matrix, detections): if cost_matrix.size == 0: return cost_matrix iou_sim = 1 - cost_matrix det_scores = np.array([det.score for det in detections]) det_scores = np.expand_dims(det_scores, axis=0).repeat(cost_matrix.shape[0], axis=0) fuse_sim = iou_sim * det_scores return 1 - fuse_sim # fuse_cost def bbox_ious(box1, box2, eps=1e-7): """ Calculate the Intersection over Union (IoU) between pairs of bounding boxes. Args: box1 (np.array): A numpy array of shape (n, 4) representing 'n' bounding boxes. Each row is in the format (x1, y1, x2, y2). box2 (np.array): A numpy array of shape (m, 4) representing 'm' bounding boxes. Each row is in the format (x1, y1, x2, y2). eps (float, optional): A small constant to prevent division by zero. Defaults to 1e-7. Returns: (np.array): A numpy array of shape (n, m) representing the IoU scores for each pair of bounding boxes from box1 and box2. Note: The bounding box coordinates are expected to be in the format (x1, y1, x2, y2). """ # Get the coordinates of bounding boxes b1_x1, b1_y1, b1_x2, b1_y2 = box1.T b2_x1, b2_y1, b2_x2, b2_y2 = box2.T # Intersection area inter_area = (np.minimum(b1_x2[:, None], b2_x2) - np.maximum(b1_x1[:, None], b2_x1)).clip(0) * \ (np.minimum(b1_y2[:, None], b2_y2) - np.maximum(b1_y1[:, None], b2_y1)).clip(0) # box2 area box1_area = (b1_x2 - b1_x1) * (b1_y2 - b1_y1) box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) return inter_area / (box2_area + box1_area[:, None] - inter_area + eps)