# Ultralytics YOLO 🚀, GPL-3.0 license import os from ultralytics.yolo.utils import LOGGER, TESTS_RUNNING from ultralytics.yolo.utils.torch_utils import get_flops, get_num_params try: from importlib.metadata import version import dvclive assert not TESTS_RUNNING # do not log pytest assert version('dvclive') except (ImportError, AssertionError): dvclive = None # DVCLive logger instance live = None _processed_plots = {} # `on_fit_epoch_end` is called on final validation (probably need to be fixed) # for now this is the way we distinguish final evaluation of the best model vs # last epoch validation _training_epoch = False def _logger_disabled(): return os.getenv('ULTRALYTICS_DVC_DISABLED', 'false').lower() == 'true' def _log_images(image_path, prefix=''): if live: live.log_image(os.path.join(prefix, image_path.name), image_path) def _log_plots(plots, prefix=''): for name, params in plots.items(): timestamp = params['timestamp'] if _processed_plots.get(name, None) != timestamp: _log_images(name, prefix) _processed_plots[name] = timestamp def _log_confusion_matrix(validator): targets = [] preds = [] matrix = validator.confusion_matrix.matrix names = list(validator.names.values()) if validator.confusion_matrix.task == 'detect': names += ['background'] for ti, pred in enumerate(matrix.T.astype(int)): for pi, num in enumerate(pred): targets.extend([names[ti]] * num) preds.extend([names[pi]] * num) live.log_sklearn_plot('confusion_matrix', targets, preds, name='cf.json', normalized=True) def on_pretrain_routine_start(trainer): try: global live if not _logger_disabled(): live = dvclive.Live(save_dvc_exp=True) LOGGER.info( 'DVCLive is detected and auto logging is enabled (can be disabled with `ULTRALYTICS_DVC_DISABLED=true`).' ) else: LOGGER.debug('DVCLive is detected and auto logging is disabled via `ULTRALYTICS_DVC_DISABLED`.') live = None except Exception as e: LOGGER.warning(f'WARNING ⚠️ DVCLive installed but not initialized correctly, not logging this run. {e}') def on_pretrain_routine_end(trainer): _log_plots(trainer.plots, 'train') def on_train_start(trainer): if live: live.log_params(trainer.args) def on_train_epoch_start(trainer): global _training_epoch _training_epoch = True def on_fit_epoch_end(trainer): global _training_epoch if live and _training_epoch: all_metrics = {**trainer.label_loss_items(trainer.tloss, prefix='train'), **trainer.metrics, **trainer.lr} for metric, value in all_metrics.items(): live.log_metric(metric, value) if trainer.epoch == 0: model_info = { 'model/parameters': get_num_params(trainer.model), 'model/GFLOPs': round(get_flops(trainer.model), 3), 'model/speed(ms)': round(trainer.validator.speed['inference'], 3)} for metric, value in model_info.items(): live.log_metric(metric, value, plot=False) _log_plots(trainer.plots, 'train') _log_plots(trainer.validator.plots, 'val') live.next_step() _training_epoch = False def on_train_end(trainer): if live: # At the end log the best metrics. It runs validator on the best model internally. all_metrics = {**trainer.label_loss_items(trainer.tloss, prefix='train'), **trainer.metrics, **trainer.lr} for metric, value in all_metrics.items(): live.log_metric(metric, value, plot=False) _log_plots(trainer.plots, 'eval') _log_plots(trainer.validator.plots, 'eval') _log_confusion_matrix(trainer.validator) if trainer.best.exists(): live.log_artifact(trainer.best, copy=True) live.end() callbacks = { 'on_pretrain_routine_start': on_pretrain_routine_start, 'on_pretrain_routine_end': on_pretrain_routine_end, 'on_train_start': on_train_start, 'on_train_epoch_start': on_train_epoch_start, 'on_fit_epoch_end': on_fit_epoch_end, 'on_train_end': on_train_end} if dvclive else {}