Object detection is a task that involves identifying the location and class of objects in an image or video stream. The output of an object detector is a set of bounding boxes that enclose the objects in the image, along with class labels and confidence scores for each box. Object detection is a good choice when you need to identify objects of interest in a scene, but don't need to know exactly where the object is or its exact shape. !!! tip "Tip" YOLOv8 _detection_ models have no suffix and are the default YOLOv8 models, i.e. `yolov8n.pt` and are pretrained on COCO. [Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models/v8){ .md-button .md-button--primary} ## Train Train YOLOv8n on the COCO128 dataset for 100 epochs at image size 640. For a full list of available arguments see the [Configuration](../usage/cfg.md) page. !!! example "" === "Python" ```python from ultralytics import YOLO # Load a model model = YOLO("yolov8n.yaml") # build a new model from scratch model = YOLO("yolov8n.pt") # load a pretrained model (recommended for training) # Train the model model.train(data="coco128.yaml", epochs=100, imgsz=640) ``` === "CLI" ```bash yolo detect train data=coco128.yaml model=yolov8n.pt epochs=100 imgsz=640 ``` ## Val Validate trained YOLOv8n model accuracy on the COCO128 dataset. No argument need to passed as the `model` retains it's training `data` and arguments as model attributes. !!! example "" === "Python" ```python from ultralytics import YOLO # Load a model model = YOLO("yolov8n.pt") # load an official model model = YOLO("path/to/best.pt") # load a custom model # Validate the model metrics = model.val() # no arguments needed, dataset and settings remembered metrics.box.map # map50-95 metrics.box.map50 # map50 metrics.box.map75 # map75 metrics.box.maps # a list contains map50-95 of each category ``` === "CLI" ```bash yolo detect val model=yolov8n.pt # val official model yolo detect val model=path/to/best.pt # val custom model ``` ## Predict Use a trained YOLOv8n model to run predictions on images. !!! example "" === "Python" ```python from ultralytics import YOLO # Load a model model = YOLO("yolov8n.pt") # load an official model model = YOLO("path/to/best.pt") # load a custom model # Predict with the model results = model("https://ultralytics.com/images/bus.jpg") # predict on an image ``` === "CLI" ```bash yolo detect predict model=yolov8n.pt source="https://ultralytics.com/images/bus.jpg" # predict with official model yolo detect predict model=path/to/best.pt source="https://ultralytics.com/images/bus.jpg" # predict with custom model ``` Read more details of `predict` in our [Predict](https://docs.ultralytics.com/modes/predict/) page. ## Export Export a YOLOv8n model to a different format like ONNX, CoreML, etc. !!! example "" === "Python" ```python from ultralytics import YOLO # Load a model model = YOLO("yolov8n.pt") # load an official model model = YOLO("path/to/best.pt") # load a custom trained # Export the model model.export(format="onnx") ``` === "CLI" ```bash yolo export model=yolov8n.pt format=onnx # export official model yolo export model=path/to/best.pt format=onnx # export custom trained model ``` Available YOLOv8 export formats are in the table below. You can predict or validate directly on exported models, i.e. `yolo predict model=yolov8n.onnx`. | Format | `format` Argument | Model | Metadata | |--------------------------------------------------------------------|-------------------|---------------------------|----------| | [PyTorch](https://pytorch.org/) | - | `yolov8n.pt` | ✅ | | [TorchScript](https://pytorch.org/docs/stable/jit.html) | `torchscript` | `yolov8n.torchscript` | ✅ | | [ONNX](https://onnx.ai/) | `onnx` | `yolov8n.onnx` | ✅ | | [OpenVINO](https://docs.openvino.ai/latest/index.html) | `openvino` | `yolov8n_openvino_model/` | ✅ | | [TensorRT](https://developer.nvidia.com/tensorrt) | `engine` | `yolov8n.engine` | ✅ | | [CoreML](https://github.com/apple/coremltools) | `coreml` | `yolov8n.mlmodel` | ✅ | | [TF SavedModel](https://www.tensorflow.org/guide/saved_model) | `saved_model` | `yolov8n_saved_model/` | ✅ | | [TF GraphDef](https://www.tensorflow.org/api_docs/python/tf/Graph) | `pb` | `yolov8n.pb` | ❌ | | [TF Lite](https://www.tensorflow.org/lite) | `tflite` | `yolov8n.tflite` | ✅ | | [TF Edge TPU](https://coral.ai/docs/edgetpu/models-intro/) | `edgetpu` | `yolov8n_edgetpu.tflite` | ✅ | | [TF.js](https://www.tensorflow.org/js) | `tfjs` | `yolov8n_web_model/` | ✅ | | [PaddlePaddle](https://github.com/PaddlePaddle) | `paddle` | `yolov8n_paddle_model/` | ✅ |