# Ultralytics YOLO 🚀, AGPL-3.0 license import subprocess from pathlib import Path import pytest from ultralytics.yolo.utils import ONLINE, ROOT, SETTINGS WEIGHT_DIR = Path(SETTINGS['weights_dir']) TASK_ARGS = [ # (task, model, data) ('detect', 'yolov8n', 'coco8.yaml'), ('segment', 'yolov8n-seg', 'coco8-seg.yaml'), ('classify', 'yolov8n-cls', 'imagenet10'), ('pose', 'yolov8n-pose', 'coco8-pose.yaml')] EXPORT_ARGS = [ # (model, format) ('yolov8n', 'torchscript'), ('yolov8n-seg', 'torchscript'), ('yolov8n-cls', 'torchscript'), ('yolov8n-pose', 'torchscript')] def run(cmd): # Run a subprocess command with check=True subprocess.run(cmd.split(), check=True) def test_special_modes(): run('yolo checks') run('yolo settings') run('yolo help') @pytest.mark.parametrize('task,model,data', TASK_ARGS) def test_train(task, model, data): run(f'yolo train {task} model={model}.yaml data={data} imgsz=32 epochs=1 cache=disk') @pytest.mark.parametrize('task,model,data', TASK_ARGS) def test_val(task, model, data): run(f'yolo val {task} model={model}.pt data={data} imgsz=32') @pytest.mark.parametrize('task,model,data', TASK_ARGS) def test_predict(task, model, data): run(f"yolo predict model={model}.pt source={ROOT / 'assets'} imgsz=32 save save_crop save_txt") if ONLINE: run(f'yolo predict model={model}.pt source=https://ultralytics.com/images/bus.jpg imgsz=32') run(f'yolo predict model={model}.pt source=https://ultralytics.com/assets/decelera_landscape_min.mov imgsz=32') run(f'yolo predict model={model}.pt source=https://ultralytics.com/assets/decelera_portrait_min.mov imgsz=32') @pytest.mark.parametrize('model,format', EXPORT_ARGS) def test_export(model, format): run(f'yolo export model={model}.pt format={format}') # Slow Tests @pytest.mark.slow @pytest.mark.parametrize('task,model,data', TASK_ARGS) def test_train_gpu(task, model, data): run(f'yolo train {task} model={model}.yaml data={data} imgsz=32 epochs=1 device="0"') # single GPU run(f'yolo train {task} model={model}.pt data={data} imgsz=32 epochs=1 device="0,1"') # Multi GPU