# YOLO 🚀 by Ultralytics, GPL-3.0 license # Default training settings and hyperparameters for medium-augmentation COCO training # Task and Mode task: "classify" # choices=['detect', 'segment', 'classify', 'init'] # init is a special case mode: "train" # choice=['train', 'val', 'infer'] # Train settings ------------------------------------------------------------------------------------------------------- model: null # i.e. yolov5s.pt, yolo.yaml data: null # i.e. coco128.yaml epochs: 300 batch_size: 16 imgsz: 640 nosave: False cache: False # True/ram, disk or False device: '' # cuda device, i.e. 0 or 0,1,2,3 or cpu workers: 8 project: 'runs' name: 'exp' exist_ok: False pretrained: False optimizer: 'SGD' # choices=['SGD', 'Adam', 'AdamW', 'RMSProp'] verbose: False seed: 0 deterministic: True local_rank: -1 single_cls: False # train multi-class data as single-class image_weights: False # use weighted image selection for training rect: False # support rectangular training cos_lr: False # Use cosine LR scheduler # Segmentation overlap_mask: True # masks overlap mask_ratio: 4 # mask downsample ratio # Classification dropout: False # use dropout resume: False # Val/Test settings ---------------------------------------------------------------------------------------------------- noval: False save_json: False save_hybrid: False conf_thres: 0.001 iou_thres: 0.6 max_det: 300 half: True dnn: False # use OpenCV DNN for ONNX inference plots: False # Prediction settings: source: "ultralytics/assets/" view_img: False save_txt: False save_conf: False save_crop: False hide_labels: False # hide labels hide_conf: False vid_stride: 1 # video frame-rate stride line_thickness: 3 # bounding box thickness (pixels) update: False # Update all models visualize: False augment: False agnostic_nms: False # class-agnostic NMS retina_masks: False # Hyperparameters ------------------------------------------------------------------------------------------------------ lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3) lrf: 0.01 # final OneCycleLR learning rate (lr0 * lrf) momentum: 0.937 # SGD momentum/Adam beta1 weight_decay: 0.0005 # optimizer weight decay 5e-4 warmup_epochs: 3.0 # warmup epochs (fractions ok) warmup_momentum: 0.8 # warmup initial momentum warmup_bias_lr: 0.1 # warmup initial bias lr box: 0.05 # box loss gain cls: 0.5 # cls loss gain cls_pw: 1.0 # cls BCELoss positive_weight obj: 1.0 # obj loss gain (scale with pixels) obj_pw: 1.0 # obj BCELoss positive_weight iou_t: 0.20 # IoU training threshold anchor_t: 4.0 # anchor-multiple threshold # anchors: 3 # anchors per output layer (0 to ignore) fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5) label_smoothing: 0.0 nbs: 64 # nominal batch size # anchors: 3 hsv_h: 0.015 # image HSV-Hue augmentation (fraction) hsv_s: 0.7 # image HSV-Saturation augmentation (fraction) hsv_v: 0.4 # image HSV-Value augmentation (fraction) degrees: 0.0 # image rotation (+/- deg) translate: 0.1 # image translation (+/- fraction) scale: 0.5 # image scale (+/- gain) shear: 0.0 # image shear (+/- deg) perspective: 0.0 # image perspective (+/- fraction), range 0-0.001 flipud: 0.0 # image flip up-down (probability) fliplr: 0.5 # image flip left-right (probability) mosaic: 1.0 # image mosaic (probability) mixup: 0.0 # image mixup (probability) copy_paste: 0.0 # segment copy-paste (probability) # Hydra configs -------------------------------------------------------------------------------------------------------- hydra: output_subdir: null # disable hydra directory creation run: dir: .