# Ultralytics YOLO 🚀, AGPL-3.0 license import torch from ultralytics.engine.predictor import BasePredictor from ultralytics.engine.results import Results from ultralytics.utils import ASSETS, DEFAULT_CFG class ClassificationPredictor(BasePredictor): def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): super().__init__(cfg, overrides, _callbacks) self.args.task = 'classify' def preprocess(self, img): """Converts input image to model-compatible data type.""" if not isinstance(img, torch.Tensor): img = torch.stack([self.transforms(im) for im in img], dim=0) img = (img if isinstance(img, torch.Tensor) else torch.from_numpy(img)).to(self.model.device) return img.half() if self.model.fp16 else img.float() # uint8 to fp16/32 def postprocess(self, preds, img, orig_imgs): """Post-processes predictions to return Results objects.""" results = [] for i, pred in enumerate(preds): orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs path = self.batch[0] img_path = path[i] if isinstance(path, list) else path results.append(Results(orig_img=orig_img, path=img_path, names=self.model.names, probs=pred)) return results def predict(cfg=DEFAULT_CFG, use_python=False): """Run YOLO model predictions on input images/videos.""" model = cfg.model or 'yolov8n-cls.pt' # or "resnet18" source = cfg.source or ASSETS args = dict(model=model, source=source) if use_python: from ultralytics import YOLO YOLO(model)(**args) else: predictor = ClassificationPredictor(overrides=args) predictor.predict_cli() if __name__ == '__main__': predict()