# Ultralytics YOLO 🚀, AGPL-3.0 license import shutil from copy import copy from pathlib import Path import cv2 import numpy as np import pytest import torch from PIL import Image from torchvision.transforms import ToTensor from ultralytics import RTDETR, YOLO from ultralytics.data.build import load_inference_source from ultralytics.utils import ASSETS, DEFAULT_CFG, LINUX, ONLINE, ROOT, SETTINGS from ultralytics.utils.downloads import download from ultralytics.utils.torch_utils import TORCH_1_9 WEIGHTS_DIR = Path(SETTINGS['weights_dir']) MODEL = WEIGHTS_DIR / 'path with spaces' / 'yolov8n.pt' # test spaces in path CFG = 'yolov8n.yaml' SOURCE = ASSETS / 'bus.jpg' TMP = (ROOT / '../tests/tmp').resolve() # temp directory for test files def test_model_forward(): model = YOLO(CFG) model(SOURCE, imgsz=32, augment=True) def test_model_methods(): model = YOLO(MODEL) model.info(verbose=True, detailed=True) model = model.reset_weights() model = model.load(MODEL) model.to('cpu') _ = model.names _ = model.device def test_model_fuse(): model = YOLO(MODEL) model.fuse() def test_predict_dir(): model = YOLO(MODEL) model(source=ASSETS, imgsz=32) def test_predict_img(): model = YOLO(MODEL) seg_model = YOLO(WEIGHTS_DIR / 'yolov8n-seg.pt') cls_model = YOLO(WEIGHTS_DIR / 'yolov8n-cls.pt') pose_model = YOLO(WEIGHTS_DIR / 'yolov8n-pose.pt') im = cv2.imread(str(SOURCE)) assert len(model(source=Image.open(SOURCE), save=True, verbose=True, imgsz=32)) == 1 # PIL assert len(model(source=im, save=True, save_txt=True, imgsz=32)) == 1 # ndarray assert len(model(source=[im, im], save=True, save_txt=True, imgsz=32)) == 2 # batch assert len(list(model(source=[im, im], save=True, stream=True, imgsz=32))) == 2 # stream assert len(model(torch.zeros(320, 640, 3).numpy(), imgsz=32)) == 1 # tensor to numpy batch = [ str(SOURCE), # filename Path(SOURCE), # Path 'https://ultralytics.com/images/zidane.jpg' if ONLINE else SOURCE, # URI cv2.imread(str(SOURCE)), # OpenCV Image.open(SOURCE), # PIL np.zeros((320, 640, 3))] # numpy assert len(model(batch, imgsz=32)) == len(batch) # multiple sources in a batch # Test tensor inference im = cv2.imread(str(SOURCE)) # OpenCV t = cv2.resize(im, (32, 32)) t = ToTensor()(t) t = torch.stack([t, t, t, t]) results = model(t, imgsz=32) assert len(results) == t.shape[0] results = seg_model(t, imgsz=32) assert len(results) == t.shape[0] results = cls_model(t, imgsz=32) assert len(results) == t.shape[0] results = pose_model(t, imgsz=32) assert len(results) == t.shape[0] def test_predict_grey_and_4ch(): # Convert SOURCE to greyscale and 4-ch im = Image.open(SOURCE) source_greyscale = Path(f'{SOURCE.parent / SOURCE.stem}_greyscale.jpg') source_rgba = Path(f'{SOURCE.parent / SOURCE.stem}_4ch.png') im.convert('L').save(source_greyscale) # greyscale im.convert('RGBA').save(source_rgba) # 4-ch PNG with alpha # Inference model = YOLO(MODEL) for f in source_rgba, source_greyscale: for source in Image.open(f), cv2.imread(str(f)), f: model(source, save=True, verbose=True, imgsz=32) # Cleanup source_greyscale.unlink() source_rgba.unlink() @pytest.mark.skipif(not ONLINE, reason='environment is offline') def test_track_stream(): # Test YouTube streaming inference (short 10 frame video) with non-default ByteTrack tracker # imgsz=160 required for tracking for higher confidence and better matches import yaml model = YOLO(MODEL) model.predict('https://youtu.be/G17sBkb38XQ', imgsz=96) model.track('https://ultralytics.com/assets/decelera_portrait_min.mov', imgsz=160, tracker='bytetrack.yaml') model.track('https://ultralytics.com/assets/decelera_portrait_min.mov', imgsz=160, tracker='botsort.yaml') # Test Global Motion Compensation (GMC) methods for gmc in 'orb', 'sift', 'ecc': with open(ROOT / 'cfg/trackers/botsort.yaml') as f: data = yaml.safe_load(f) tracker = TMP / f'botsort-{gmc}.yaml' data['gmc_method'] = gmc with open(tracker, 'w') as f: yaml.safe_dump(data, f) model.track('https://ultralytics.com/assets/decelera_portrait_min.mov', imgsz=160, tracker=tracker) def test_val(): model = YOLO(MODEL) model.val(data='coco8.yaml', imgsz=32) def test_train_scratch(): model = YOLO(CFG) model.train(data='coco8.yaml', epochs=1, imgsz=32, cache='disk', batch=-1) # test disk caching with AutoBatch model(SOURCE) def test_train_pretrained(): model = YOLO(WEIGHTS_DIR / 'yolov8n-seg.pt') model.train(data='coco8-seg.yaml', epochs=1, imgsz=32, cache='ram', copy_paste=0.5, mixup=0.5) # test RAM caching model(SOURCE) def test_export_torchscript(): model = YOLO(MODEL) f = model.export(format='torchscript') YOLO(f)(SOURCE) # exported model inference def test_export_onnx(): model = YOLO(MODEL) f = model.export(format='onnx', dynamic=True) YOLO(f)(SOURCE) # exported model inference def test_export_openvino(): model = YOLO(MODEL) f = model.export(format='openvino') YOLO(f)(SOURCE) # exported model inference def test_export_coreml(): # sourcery skip: move-assign model = YOLO(MODEL) model.export(format='coreml', nms=True) # if MACOS: # YOLO(f)(SOURCE) # model prediction only supported on macOS def test_export_tflite(enabled=False): # TF suffers from install conflicts on Windows and macOS if enabled and LINUX: model = YOLO(MODEL) f = model.export(format='tflite') YOLO(f)(SOURCE) def test_export_pb(enabled=False): # TF suffers from install conflicts on Windows and macOS if enabled and LINUX: model = YOLO(MODEL) f = model.export(format='pb') YOLO(f)(SOURCE) def test_export_paddle(enabled=False): # Paddle protobuf requirements conflicting with onnx protobuf requirements if enabled: model = YOLO(MODEL) model.export(format='paddle') def test_export_ncnn(enabled=False): model = YOLO(MODEL) f = model.export(format='ncnn') YOLO(f)(SOURCE) # exported model inference def test_all_model_yamls(): for m in (ROOT / 'cfg' / 'models').rglob('*.yaml'): if 'rtdetr' in m.name: if TORCH_1_9: # torch<=1.8 issue - TypeError: __init__() got an unexpected keyword argument 'batch_first' RTDETR(m.name)(SOURCE, imgsz=640) else: YOLO(m.name) def test_workflow(): model = YOLO(MODEL) model.train(data='coco8.yaml', epochs=1, imgsz=32) model.val() model.predict(SOURCE) model.export(format='onnx') # export a model to ONNX format def test_predict_callback_and_setup(): # Test callback addition for prediction def on_predict_batch_end(predictor): # results -> List[batch_size] path, im0s, _, _ = predictor.batch im0s = im0s if isinstance(im0s, list) else [im0s] bs = [predictor.dataset.bs for _ in range(len(path))] predictor.results = zip(predictor.results, im0s, bs) model = YOLO(MODEL) model.add_callback('on_predict_batch_end', on_predict_batch_end) dataset = load_inference_source(source=SOURCE) bs = dataset.bs # noqa access predictor properties results = model.predict(dataset, stream=True) # source already setup for r, im0, bs in results: print('test_callback', im0.shape) print('test_callback', bs) boxes = r.boxes # Boxes object for bbox outputs print(boxes) def test_results(): for m in 'yolov8n-pose.pt', 'yolov8n-seg.pt', 'yolov8n.pt', 'yolov8n-cls.pt': model = YOLO(m) results = model([SOURCE, SOURCE]) for r in results: r = r.cpu().numpy() r = r.to(device='cpu', dtype=torch.float32) r.save_txt(txt_file='runs/tests/label.txt', save_conf=True) r.save_crop(save_dir='runs/tests/crops/') r.tojson(normalize=True) r.plot(pil=True) r.plot(conf=True, boxes=True) print(r) print(r.path) for k in r.keys: print(getattr(r, k)) @pytest.mark.skipif(not ONLINE, reason='environment is offline') def test_data_utils(): # Test functions in ultralytics/data/utils.py from ultralytics.data.utils import HUBDatasetStats, autosplit from ultralytics.utils.downloads import zip_directory # from ultralytics.utils.files import WorkingDirectory # with WorkingDirectory(ROOT.parent / 'tests'): download('https://github.com/ultralytics/hub/raw/master/example_datasets/coco8.zip', unzip=False) shutil.move('coco8.zip', TMP) stats = HUBDatasetStats(TMP / 'coco8.zip', task='detect') stats.get_json(save=True) stats.process_images() autosplit(TMP / 'coco8') zip_directory(TMP / 'coco8/images/val') # zip @pytest.mark.skipif(not ONLINE, reason='environment is offline') def test_data_converter(): # Test dataset converters from ultralytics.data.converter import coco80_to_coco91_class, convert_coco file = 'instances_val2017.json' download(f'https://github.com/ultralytics/yolov5/releases/download/v1.0/{file}') shutil.move(file, TMP) convert_coco(labels_dir=TMP, use_segments=True, use_keypoints=False, cls91to80=True) coco80_to_coco91_class() def test_events(): # Test event sending from ultralytics.hub.utils import Events events = Events() events.enabled = True cfg = copy(DEFAULT_CFG) # does not require deepcopy cfg.mode = 'test' events(cfg) def test_utils_init(): from ultralytics.utils import get_git_branch, get_git_origin_url, get_ubuntu_version, is_github_actions_ci get_ubuntu_version() is_github_actions_ci() get_git_origin_url() get_git_branch() def test_utils_checks(): from ultralytics.utils.checks import check_requirements, check_yolov5u_filename, git_describe check_yolov5u_filename('yolov5n.pt') # check_imshow(warn=True) git_describe(ROOT) check_requirements() # check requirements.txt def test_utils_benchmarks(): from ultralytics.utils.benchmarks import ProfileModels ProfileModels(['yolov8n.yaml'], imgsz=32, min_time=1, num_timed_runs=3, num_warmup_runs=1).profile() def test_utils_torchutils(): from ultralytics.nn.modules.conv import Conv from ultralytics.utils.torch_utils import get_flops_with_torch_profiler, profile, time_sync x = torch.randn(1, 64, 20, 20) m = Conv(64, 64, k=1, s=2) profile(x, [m], n=3) get_flops_with_torch_profiler(m) time_sync() def test_utils_downloads(): from ultralytics.utils.downloads import get_google_drive_file_info get_google_drive_file_info('https://drive.google.com/file/d/1cqT-cJgANNrhIHCrEufUYhQ4RqiWG_lJ/view?usp=drive_link') def test_utils_ops(): from ultralytics.utils.ops import make_divisible make_divisible(17, 8) def test_utils_files(): from ultralytics.utils.files import file_age, file_date, get_latest_run, spaces_in_path file_age(SOURCE) file_date(SOURCE) get_latest_run(ROOT / 'runs') path = TMP / 'path/with spaces' path.mkdir(parents=True, exist_ok=True) with spaces_in_path(path) as new_path: print(new_path)