# Ultralytics YOLO 🚀, AGPL-3.0 license import matplotlib.image as mpimg import matplotlib.pyplot as plt from ultralytics.yolo.utils import LOGGER, TESTS_RUNNING from ultralytics.yolo.utils.torch_utils import get_flops, get_num_params try: import neptune from neptune.types import File assert not TESTS_RUNNING # do not log pytest assert hasattr(neptune, '__version__') except (ImportError, AssertionError): neptune = None run = None # NeptuneAI experiment logger instance def _log_scalars(scalars, step=0): """Log scalars to the NeptuneAI experiment logger.""" if run: for k, v in scalars.items(): run[k].append(value=v, step=step) def _log_images(imgs_dict, group=''): """Log scalars to the NeptuneAI experiment logger.""" if run: for k, v in imgs_dict.items(): run[f'{group}/{k}'].upload(File(v)) def _log_plot(title, plot_path): """Log plots to the NeptuneAI experiment logger.""" """ Log image as plot in the plot section of NeptuneAI arguments: title (str) Title of the plot plot_path (PosixPath or str) Path to the saved image file """ img = mpimg.imread(plot_path) fig = plt.figure() ax = fig.add_axes([0, 0, 1, 1], frameon=False, aspect='auto', xticks=[], yticks=[]) # no ticks ax.imshow(img) run[f'Plots/{title}'].upload(fig) def on_pretrain_routine_start(trainer): """Callback function called before the training routine starts.""" try: global run run = neptune.init_run(project=trainer.args.project or 'YOLOv8', name=trainer.args.name, tags=['YOLOv8']) run['Configuration/Hyperparameters'] = {k: '' if v is None else v for k, v in vars(trainer.args).items()} except Exception as e: LOGGER.warning(f'WARNING ⚠️ NeptuneAI installed but not initialized correctly, not logging this run. {e}') def on_train_epoch_end(trainer): """Callback function called at end of each training epoch.""" _log_scalars(trainer.label_loss_items(trainer.tloss, prefix='train'), trainer.epoch + 1) _log_scalars(trainer.lr, trainer.epoch + 1) if trainer.epoch == 1: _log_images({f.stem: str(f) for f in trainer.save_dir.glob('train_batch*.jpg')}, 'Mosaic') def on_fit_epoch_end(trainer): """Callback function called at end of each fit (train+val) epoch.""" if run and trainer.epoch == 0: model_info = { 'parameters': get_num_params(trainer.model), 'GFLOPs': round(get_flops(trainer.model), 3), 'speed(ms)': round(trainer.validator.speed['inference'], 3)} run['Configuration/Model'] = model_info _log_scalars(trainer.metrics, trainer.epoch + 1) def on_val_end(validator): """Callback function called at end of each validation.""" if run: # Log val_labels and val_pred _log_images({f.stem: str(f) for f in validator.save_dir.glob('val*.jpg')}, 'Validation') def on_train_end(trainer): """Callback function called at end of training.""" if run: # Log final results, CM matrix + PR plots files = ['results.png', 'confusion_matrix.png', *(f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R'))] files = [(trainer.save_dir / f) for f in files if (trainer.save_dir / f).exists()] # filter for f in files: _log_plot(title=f.stem, plot_path=f) # Log the final model run[f'weights/{trainer.args.name or trainer.args.task}/{str(trainer.best.name)}'].upload(File(str( trainer.best))) run.stop() callbacks = { 'on_pretrain_routine_start': on_pretrain_routine_start, 'on_train_epoch_end': on_train_epoch_end, 'on_fit_epoch_end': on_fit_epoch_end, 'on_val_end': on_val_end, 'on_train_end': on_train_end} if neptune else {}