from pathlib import Path from ultralytics import YOLO from ultralytics.vit.sam import PromptPredictor, build_sam from ultralytics.yolo.utils.torch_utils import select_device def auto_annotate(data, det_model='yolov8x.pt', sam_model='sam_b.pt', device='', output_dir=None): """ Automatically annotates images using a YOLO object detection model and a SAM segmentation model. Args: data (str): Path to a folder containing images to be annotated. det_model (str, optional): Pre-trained YOLO detection model. Defaults to 'yolov8x.pt'. sam_model (str, optional): Pre-trained SAM segmentation model. Defaults to 'sam_b.pt'. device (str, optional): Device to run the models on. Defaults to an empty string (CPU or GPU, if available). output_dir (str, None, optional): Directory to save the annotated results. Defaults to a 'labels' folder in the same directory as 'data'. """ device = select_device(device) det_model = YOLO(det_model) sam_model = build_sam(sam_model) det_model.to(device) sam_model.to(device) if not output_dir: output_dir = Path(str(data)).parent / 'labels' Path(output_dir).mkdir(exist_ok=True, parents=True) prompt_predictor = PromptPredictor(sam_model) det_results = det_model(data, stream=True) for result in det_results: boxes = result.boxes.xyxy # Boxes object for bbox outputs class_ids = result.boxes.cls.int().tolist() # noqa prompt_predictor.set_image(result.orig_img) masks, _, _ = prompt_predictor.predict_torch( point_coords=None, point_labels=None, boxes=prompt_predictor.transform.apply_boxes_torch(boxes, result.orig_shape[:2]), multimask_output=False, ) result.update(masks=masks.squeeze(1)) segments = result.masks.xyn # noqa with open(f'{str(Path(output_dir) / Path(result.path).stem)}.txt', 'w') as f: for i in range(len(segments)): s = segments[i] if len(s) == 0: continue segment = map(str, segments[i].reshape(-1).tolist()) f.write(f'{class_ids[i]} ' + ' '.join(segment) + '\n')