from pathlib import Path import hydra import torch import torchvision from ultralytics.nn.tasks import ClassificationModel, attempt_load_weights from ultralytics.yolo import v8 from ultralytics.yolo.data import build_classification_dataloader from ultralytics.yolo.engine.trainer import BaseTrainer from ultralytics.yolo.utils import DEFAULT_CONFIG class ClassificationTrainer(BaseTrainer): def __init__(self, config=DEFAULT_CONFIG, overrides={}): overrides["task"] = "classify" super().__init__(config, overrides) def set_model_attributes(self): self.model.names = self.data["names"] def get_model(self, cfg=None, weights=None): model = ClassificationModel(cfg, nc=self.data["nc"]) if weights: model.load(weights) return model def setup_model(self): """ load/create/download model for any task """ # classification models require special handling if isinstance(self.model, torch.nn.Module): # if model is loaded beforehand. No setup needed return model = self.model pretrained = False # Load a YOLO model locally, from torchvision, or from Ultralytics assets if model.endswith(".pt"): model = model.split(".")[0] pretrained = True else: self.model = self.get_model(cfg=model) # order: check local file -> torchvision assets -> ultralytics asset if Path(f"{model}.pt").is_file(): # local file self.model = attempt_load_weights(f"{model}.pt", device='cpu') elif model in torchvision.models.__dict__: self.model = torchvision.models.__dict__[model](weights='IMAGENET1K_V1' if pretrained else None) else: self.model = attempt_load_weights(f"{model}.pt", device='cpu') return # dont return ckpt. Classification doesn't support resume def get_dataloader(self, dataset_path, batch_size, rank=0, mode="train"): return build_classification_dataloader(path=dataset_path, imgsz=self.args.imgsz, batch_size=batch_size, rank=rank) def preprocess_batch(self, batch): batch["img"] = batch["img"].to(self.device) batch["cls"] = batch["cls"].to(self.device) return batch def get_validator(self): return v8.classify.ClassificationValidator(self.test_loader, self.save_dir, logger=self.console) def criterion(self, preds, batch): loss = torch.nn.functional.cross_entropy(preds, batch["cls"]) return loss, loss def check_resume(self): pass def resume_training(self, ckpt): pass def final_eval(self): pass @hydra.main(version_base=None, config_path=str(DEFAULT_CONFIG.parent), config_name=DEFAULT_CONFIG.name) def train(cfg): cfg.model = cfg.model or "resnet18" cfg.data = cfg.data or "imagenette160" # or yolo.ClassificationDataset("mnist") trainer = ClassificationTrainer(cfg) trainer.train() if __name__ == "__main__": """ CLI usage: python ultralytics/yolo/v8/classify/train.py model=resnet18 data=imagenette160 epochs=1 imgsz=224 TODO: Direct cli support, i.e, yolov8 classify_train args.epochs 10 """ train()