import hydra import torch from ultralytics.yolo.data import build_classification_dataloader from ultralytics.yolo.engine.validator import BaseValidator from ultralytics.yolo.utils import DEFAULT_CONFIG from ultralytics.yolo.utils.metrics import ClassifyMetrics class ClassificationValidator(BaseValidator): def __init__(self, dataloader=None, save_dir=None, pbar=None, logger=None, args=None): super().__init__(dataloader, save_dir, pbar, logger, args) self.metrics = ClassifyMetrics() def init_metrics(self, model): self.correct = torch.tensor([], device=next(model.parameters()).device) def preprocess(self, batch): batch["img"] = batch["img"].to(self.device, non_blocking=True) batch["img"] = batch["img"].half() if self.args.half else batch["img"].float() batch["cls"] = batch["cls"].to(self.device) return batch def update_metrics(self, preds, batch): targets = batch["cls"] correct_in_batch = (targets[:, None] == preds).float() self.correct = torch.cat((self.correct, correct_in_batch)) def get_stats(self): self.metrics.process(self.correct) return self.metrics.results_dict def get_dataloader(self, dataset_path, batch_size): return build_classification_dataloader(path=dataset_path, imgsz=self.args.imgsz, batch_size=batch_size) @hydra.main(version_base=None, config_path=str(DEFAULT_CONFIG.parent), config_name=DEFAULT_CONFIG.name) def val(cfg): cfg.data = cfg.data or "imagenette160" cfg.model = cfg.model or "resnet18" validator = ClassificationValidator(args=cfg) validator(model=cfg.model) if __name__ == "__main__": val()