# Ultralytics YOLO 🚀, AGPL-3.0 license import torch from ultralytics.engine.predictor import BasePredictor from ultralytics.engine.results import Results from ultralytics.utils import DEFAULT_CFG, ROOT, ops class DetectionPredictor(BasePredictor): def postprocess(self, preds, img, orig_imgs): """Postprocesses predictions and returns a list of Results objects.""" preds = ops.non_max_suppression(preds, self.args.conf, self.args.iou, agnostic=self.args.agnostic_nms, max_det=self.args.max_det, classes=self.args.classes) results = [] for i, pred in enumerate(preds): orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs if not isinstance(orig_imgs, torch.Tensor): pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape) path = self.batch[0] img_path = path[i] if isinstance(path, list) else path results.append(Results(orig_img=orig_img, path=img_path, names=self.model.names, boxes=pred)) return results def predict(cfg=DEFAULT_CFG, use_python=False): """Runs YOLO model inference on input image(s).""" model = cfg.model or 'yolov8n.pt' source = cfg.source if cfg.source is not None else ROOT / 'assets' if (ROOT / 'assets').exists() \ else 'https://ultralytics.com/images/bus.jpg' args = dict(model=model, source=source) if use_python: from ultralytics import YOLO YOLO(model)(**args) else: predictor = DetectionPredictor(overrides=args) predictor.predict_cli() if __name__ == '__main__': predict()