import hydra import torch from ultralytics.yolo.engine.predictor import BasePredictor from ultralytics.yolo.utils import DEFAULT_CONFIG, ROOT, ops from ultralytics.yolo.utils.checks import check_imgsz from ultralytics.yolo.utils.plotting import Annotator, colors, save_one_box class DetectionPredictor(BasePredictor): def get_annotator(self, img): return Annotator(img, line_width=self.args.line_thickness, example=str(self.model.names)) def preprocess(self, img): img = torch.from_numpy(img).to(self.model.device) img = img.half() if self.model.fp16 else img.float() # uint8 to fp16/32 img /= 255 # 0 - 255 to 0.0 - 1.0 return img def postprocess(self, preds, img, orig_img): preds = ops.non_max_suppression(preds, self.args.conf, self.args.iou, agnostic=self.args.agnostic_nms, max_det=self.args.max_det) for i, pred in enumerate(preds): shape = orig_img[i].shape if self.webcam else orig_img.shape pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], shape).round() return preds def write_results(self, idx, preds, batch): p, im, im0 = batch log_string = "" if len(im.shape) == 3: im = im[None] # expand for batch dim self.seen += 1 im0 = im0.copy() if self.webcam: # batch_size >= 1 log_string += f'{idx}: ' frame = self.dataset.count else: frame = getattr(self.dataset, 'frame', 0) self.data_path = p # save_path = str(self.save_dir / p.name) # im.jpg self.txt_path = str(self.save_dir / 'labels' / p.stem) + ('' if self.dataset.mode == 'image' else f'_{frame}') log_string += '%gx%g ' % im.shape[2:] # print string self.annotator = self.get_annotator(im0) det = preds[idx] self.all_outputs.append(det) if len(det) == 0: return log_string for c in det[:, 5].unique(): n = (det[:, 5] == c).sum() # detections per class log_string += f"{n} {self.model.names[int(c)]}{'s' * (n > 1)}, " # write gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh for *xyxy, conf, cls in reversed(det): if self.args.save_txt: # Write to file xywh = (ops.xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh line = (cls, *xywh, conf) if self.args.save_conf else (cls, *xywh) # label format with open(f'{self.txt_path}.txt', 'a') as f: f.write(('%g ' * len(line)).rstrip() % line + '\n') if self.args.save or self.args.save_crop or self.args.show: # Add bbox to image c = int(cls) # integer class label = None if self.args.hide_labels else ( self.model.names[c] if self.args.hide_conf else f'{self.model.names[c]} {conf:.2f}') self.annotator.box_label(xyxy, label, color=colors(c, True)) if self.args.save_crop: imc = im0.copy() save_one_box(xyxy, imc, file=self.save_dir / 'crops' / self.model.model.names[c] / f'{self.data_path.stem}.jpg', BGR=True) return log_string @hydra.main(version_base=None, config_path=str(DEFAULT_CONFIG.parent), config_name=DEFAULT_CONFIG.name) def predict(cfg): cfg.model = cfg.model or "yolov8n.pt" cfg.imgsz = check_imgsz(cfg.imgsz, min_dim=2) # check image size cfg.source = cfg.source or ROOT / "assets" predictor = DetectionPredictor(cfg) predictor() if __name__ == "__main__": predict()