# Ultralytics YOLO 🚀, AGPL-3.0 license import os from pathlib import Path from ultralytics.utils import LOGGER, RANK, SETTINGS, TESTS_RUNNING, ops from ultralytics.utils.torch_utils import model_info_for_loggers try: import comet_ml assert not TESTS_RUNNING # do not log pytest assert hasattr(comet_ml, '__version__') # verify package is not directory assert SETTINGS['comet'] is True # verify integration is enabled except (ImportError, AssertionError): comet_ml = None # Ensures certain logging functions only run for supported tasks COMET_SUPPORTED_TASKS = ['detect'] # Names of plots created by YOLOv8 that are logged to Comet EVALUATION_PLOT_NAMES = 'F1_curve', 'P_curve', 'R_curve', 'PR_curve', 'confusion_matrix' LABEL_PLOT_NAMES = 'labels', 'labels_correlogram' _comet_image_prediction_count = 0 def _get_comet_mode(): return os.getenv('COMET_MODE', 'online') def _get_comet_model_name(): return os.getenv('COMET_MODEL_NAME', 'YOLOv8') def _get_eval_batch_logging_interval(): return int(os.getenv('COMET_EVAL_BATCH_LOGGING_INTERVAL', 1)) def _get_max_image_predictions_to_log(): return int(os.getenv('COMET_MAX_IMAGE_PREDICTIONS', 100)) def _scale_confidence_score(score): scale = float(os.getenv('COMET_MAX_CONFIDENCE_SCORE', 100.0)) return score * scale def _should_log_confusion_matrix(): return os.getenv('COMET_EVAL_LOG_CONFUSION_MATRIX', 'false').lower() == 'true' def _should_log_image_predictions(): return os.getenv('COMET_EVAL_LOG_IMAGE_PREDICTIONS', 'true').lower() == 'true' def _get_experiment_type(mode, project_name): """Return an experiment based on mode and project name.""" if mode == 'offline': return comet_ml.OfflineExperiment(project_name=project_name) return comet_ml.Experiment(project_name=project_name) def _create_experiment(args): """Ensures that the experiment object is only created in a single process during distributed training.""" if RANK not in (-1, 0): return try: comet_mode = _get_comet_mode() _project_name = os.getenv('COMET_PROJECT_NAME', args.project) experiment = _get_experiment_type(comet_mode, _project_name) experiment.log_parameters(vars(args)) experiment.log_others({ 'eval_batch_logging_interval': _get_eval_batch_logging_interval(), 'log_confusion_matrix_on_eval': _should_log_confusion_matrix(), 'log_image_predictions': _should_log_image_predictions(), 'max_image_predictions': _get_max_image_predictions_to_log(), }) experiment.log_other('Created from', 'yolov8') except Exception as e: LOGGER.warning(f'WARNING ⚠️ Comet installed but not initialized correctly, not logging this run. {e}') def _fetch_trainer_metadata(trainer): """Returns metadata for YOLO training including epoch and asset saving status.""" curr_epoch = trainer.epoch + 1 train_num_steps_per_epoch = len(trainer.train_loader.dataset) // trainer.batch_size curr_step = curr_epoch * train_num_steps_per_epoch final_epoch = curr_epoch == trainer.epochs save = trainer.args.save save_period = trainer.args.save_period save_interval = curr_epoch % save_period == 0 save_assets = save and save_period > 0 and save_interval and not final_epoch return dict( curr_epoch=curr_epoch, curr_step=curr_step, save_assets=save_assets, final_epoch=final_epoch, ) def _scale_bounding_box_to_original_image_shape(box, resized_image_shape, original_image_shape, ratio_pad): """YOLOv8 resizes images during training and the label values are normalized based on this resized shape. This function rescales the bounding box labels to the original image shape. """ resized_image_height, resized_image_width = resized_image_shape # Convert normalized xywh format predictions to xyxy in resized scale format box = ops.xywhn2xyxy(box, h=resized_image_height, w=resized_image_width) # Scale box predictions from resized image scale back to original image scale box = ops.scale_boxes(resized_image_shape, box, original_image_shape, ratio_pad) # Convert bounding box format from xyxy to xywh for Comet logging box = ops.xyxy2xywh(box) # Adjust xy center to correspond top-left corner box[:2] -= box[2:] / 2 box = box.tolist() return box def _format_ground_truth_annotations_for_detection(img_idx, image_path, batch, class_name_map=None): """Format ground truth annotations for detection.""" indices = batch['batch_idx'] == img_idx bboxes = batch['bboxes'][indices] if len(bboxes) == 0: LOGGER.debug(f'COMET WARNING: Image: {image_path} has no bounding boxes labels') return None cls_labels = batch['cls'][indices].squeeze(1).tolist() if class_name_map: cls_labels = [str(class_name_map[label]) for label in cls_labels] original_image_shape = batch['ori_shape'][img_idx] resized_image_shape = batch['resized_shape'][img_idx] ratio_pad = batch['ratio_pad'][img_idx] data = [] for box, label in zip(bboxes, cls_labels): box = _scale_bounding_box_to_original_image_shape(box, resized_image_shape, original_image_shape, ratio_pad) data.append({ 'boxes': [box], 'label': f'gt_{label}', 'score': _scale_confidence_score(1.0), }) return {'name': 'ground_truth', 'data': data} def _format_prediction_annotations_for_detection(image_path, metadata, class_label_map=None): """Format YOLO predictions for object detection visualization.""" stem = image_path.stem image_id = int(stem) if stem.isnumeric() else stem predictions = metadata.get(image_id) if not predictions: LOGGER.debug(f'COMET WARNING: Image: {image_path} has no bounding boxes predictions') return None data = [] for prediction in predictions: boxes = prediction['bbox'] score = _scale_confidence_score(prediction['score']) cls_label = prediction['category_id'] if class_label_map: cls_label = str(class_label_map[cls_label]) data.append({'boxes': [boxes], 'label': cls_label, 'score': score}) return {'name': 'prediction', 'data': data} def _fetch_annotations(img_idx, image_path, batch, prediction_metadata_map, class_label_map): """Join the ground truth and prediction annotations if they exist.""" ground_truth_annotations = _format_ground_truth_annotations_for_detection(img_idx, image_path, batch, class_label_map) prediction_annotations = _format_prediction_annotations_for_detection(image_path, prediction_metadata_map, class_label_map) annotations = [ annotation for annotation in [ground_truth_annotations, prediction_annotations] if annotation is not None] return [annotations] if annotations else None def _create_prediction_metadata_map(model_predictions): """Create metadata map for model predictions by groupings them based on image ID.""" pred_metadata_map = {} for prediction in model_predictions: pred_metadata_map.setdefault(prediction['image_id'], []) pred_metadata_map[prediction['image_id']].append(prediction) return pred_metadata_map def _log_confusion_matrix(experiment, trainer, curr_step, curr_epoch): """Log the confusion matrix to Comet experiment.""" conf_mat = trainer.validator.confusion_matrix.matrix names = list(trainer.data['names'].values()) + ['background'] experiment.log_confusion_matrix( matrix=conf_mat, labels=names, max_categories=len(names), epoch=curr_epoch, step=curr_step, ) def _log_images(experiment, image_paths, curr_step, annotations=None): """Logs images to the experiment with optional annotations.""" if annotations: for image_path, annotation in zip(image_paths, annotations): experiment.log_image(image_path, name=image_path.stem, step=curr_step, annotations=annotation) else: for image_path in image_paths: experiment.log_image(image_path, name=image_path.stem, step=curr_step) def _log_image_predictions(experiment, validator, curr_step): """Logs predicted boxes for a single image during training.""" global _comet_image_prediction_count task = validator.args.task if task not in COMET_SUPPORTED_TASKS: return jdict = validator.jdict if not jdict: return predictions_metadata_map = _create_prediction_metadata_map(jdict) dataloader = validator.dataloader class_label_map = validator.names batch_logging_interval = _get_eval_batch_logging_interval() max_image_predictions = _get_max_image_predictions_to_log() for batch_idx, batch in enumerate(dataloader): if (batch_idx + 1) % batch_logging_interval != 0: continue image_paths = batch['im_file'] for img_idx, image_path in enumerate(image_paths): if _comet_image_prediction_count >= max_image_predictions: return image_path = Path(image_path) annotations = _fetch_annotations( img_idx, image_path, batch, predictions_metadata_map, class_label_map, ) _log_images( experiment, [image_path], curr_step, annotations=annotations, ) _comet_image_prediction_count += 1 def _log_plots(experiment, trainer): """Logs evaluation plots and label plots for the experiment.""" plot_filenames = [trainer.save_dir / f'{plots}.png' for plots in EVALUATION_PLOT_NAMES] _log_images(experiment, plot_filenames, None) label_plot_filenames = [trainer.save_dir / f'{labels}.jpg' for labels in LABEL_PLOT_NAMES] _log_images(experiment, label_plot_filenames, None) def _log_model(experiment, trainer): """Log the best-trained model to Comet.ml.""" model_name = _get_comet_model_name() experiment.log_model( model_name, file_or_folder=str(trainer.best), file_name='best.pt', overwrite=True, ) def on_pretrain_routine_start(trainer): """Creates or resumes a CometML experiment at the start of a YOLO pre-training routine.""" experiment = comet_ml.get_global_experiment() is_alive = getattr(experiment, 'alive', False) if not experiment or not is_alive: _create_experiment(trainer.args) def on_train_epoch_end(trainer): """Log metrics and save batch images at the end of training epochs.""" experiment = comet_ml.get_global_experiment() if not experiment: return metadata = _fetch_trainer_metadata(trainer) curr_epoch = metadata['curr_epoch'] curr_step = metadata['curr_step'] experiment.log_metrics( trainer.label_loss_items(trainer.tloss, prefix='train'), step=curr_step, epoch=curr_epoch, ) if curr_epoch == 1: _log_images(experiment, trainer.save_dir.glob('train_batch*.jpg'), curr_step) def on_fit_epoch_end(trainer): """Logs model assets at the end of each epoch.""" experiment = comet_ml.get_global_experiment() if not experiment: return metadata = _fetch_trainer_metadata(trainer) curr_epoch = metadata['curr_epoch'] curr_step = metadata['curr_step'] save_assets = metadata['save_assets'] experiment.log_metrics(trainer.metrics, step=curr_step, epoch=curr_epoch) experiment.log_metrics(trainer.lr, step=curr_step, epoch=curr_epoch) if curr_epoch == 1: experiment.log_metrics(model_info_for_loggers(trainer), step=curr_step, epoch=curr_epoch) if not save_assets: return _log_model(experiment, trainer) if _should_log_confusion_matrix(): _log_confusion_matrix(experiment, trainer, curr_step, curr_epoch) if _should_log_image_predictions(): _log_image_predictions(experiment, trainer.validator, curr_step) def on_train_end(trainer): """Perform operations at the end of training.""" experiment = comet_ml.get_global_experiment() if not experiment: return metadata = _fetch_trainer_metadata(trainer) curr_epoch = metadata['curr_epoch'] curr_step = metadata['curr_step'] plots = trainer.args.plots _log_model(experiment, trainer) if plots: _log_plots(experiment, trainer) _log_confusion_matrix(experiment, trainer, curr_step, curr_epoch) _log_image_predictions(experiment, trainer.validator, curr_step) experiment.end() global _comet_image_prediction_count _comet_image_prediction_count = 0 callbacks = { 'on_pretrain_routine_start': on_pretrain_routine_start, 'on_train_epoch_end': on_train_epoch_end, 'on_fit_epoch_end': on_fit_epoch_end, 'on_train_end': on_train_end} if comet_ml else {}