From dd61b150f26680bb419d1cedb9e8a56f040b71e9 Mon Sep 17 00:00:00 2001 From: Glenn Jocher Date: Mon, 9 Jan 2023 15:47:13 +0100 Subject: [PATCH] Created using Colaboratory --- examples/tutorial.ipynb | 673 ++++++++++++++++++++++++++++++++++++++++ 1 file changed, 673 insertions(+) create mode 100644 examples/tutorial.ipynb diff --git a/examples/tutorial.ipynb b/examples/tutorial.ipynb new file mode 100644 index 0000000..d0324cf --- /dev/null +++ b/examples/tutorial.ipynb @@ -0,0 +1,673 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "YOLOv8 Tutorial", + "provenance": [], + "toc_visible": true + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "accelerator": "GPU" + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "t6MPjfT5NrKQ" + }, + "source": [ + "
\n", + " \n", + " \n", + "
\n", + "\n", + " \"Run\n", + " \"Open\n", + " \"Open\n", + "
\n", + "\n", + "Welcome to the Ultralytics YOLOv8 🚀 notebook! YOLOv8 is the latest version of the YOLO (You Only Look Once) object detection and image segmentation model developed by Ultralytics. This notebook serves as the starting point for exploring the various resources available to help you get started with YOLOv8 and understand its features and capabilities.\n", + "\n", + "The YOLOv8 models are designed to be fast, accurate, and easy to use, making them an excellent choice for a wide range of object detection and image segmentation tasks. They can be trained on large datasets and are capable of running on a variety of hardware platforms, from CPUs to GPUs.\n", + "\n", + "Whether you are a seasoned machine learning practitioner or new to the field, we hope that the resources on this page will help you get the most out of YOLOv8. Please feel free to browse the YOLOv8 Docs and reach out to us with any questions or feedback.\n", + "\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "7mGmQbAO5pQb" + }, + "source": [ + "# Setup\n", + "\n", + "Clone GitHub [repository](https://github.com/ultralytics/ultralytics), install [dependencies](https://github.com/ultralytics/ultralytics/blob/master/requirements.txt) and check PyTorch and GPU." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "wbvMlHd_QwMG", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "276a3983-eedd-4eeb-9701-2ae78e1b4c44" + }, + "source": [ + "# Pip install (recommended)\n", + "!pip install ultralytics\n", + "\n", + "from IPython import display\n", + "display.clear_output()\n", + "!yolo mode=checks" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[2K\r\u001b[2K\rUltralytics YOLO 🚀 0.0.59 Python-3.8.16 torch-1.13.0+cu116 CUDA:0 (Tesla T4, 15110MiB)\n", + "Setup complete ✅ (2 CPUs, 12.7 GB RAM, 23.1/166.8 GB disk)\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Git clone (requires GitHub token)\n", + "!git clone https://github.com/ultralytics/ultralytics\n", + "!pip install -e ultralytics\n", + "\n", + "from IPython import display\n", + "display.clear_output()\n", + "!yolo mode=checks" + ], + "metadata": { + "id": "TUFPge7f_1ms" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "4JnkELT0cIJg" + }, + "source": [ + "# 1. Predict\n", + "\n", + "`yolo mode=predict` runs YOLOv8 inference on a variety of sources, downloading models automatically from the [latest YOLOv8 release](https://github.com/ultralytics/ultralytics/releases), and saving results to `runs/predict`.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "zR9ZbuQCH7FX", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "b4d62712-a064-4f5b-856f-8a1a58e900ec" + }, + "source": [ + "!yolo task=detect mode=predict model=yolov8n.pt conf=0.25 source='https://ultralytics.com/images/zidane.jpg'\n", + "# display.Image(filename='runs/detect/predict/zidane.jpg', width=600)" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Downloading https://ultralytics.com/images/zidane.jpg to zidane.jpg...\n", + "100% 165k/165k [00:00<00:00, 72.6MB/s]\n", + "Ultralytics YOLO 🚀 0.0.59 Python-3.8.16 torch-1.13.0+cu116 CUDA:0 (Tesla T4, 15110MiB)\n", + "Downloading https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt to yolov8n.pt...\n", + "100% 6.24M/6.24M [00:03<00:00, 2.14MB/s]\n", + "\n", + "Fusing layers... \n", + "YOLOv8n summary: 168 layers, 3151904 parameters, 0 gradients, 8.7 GFLOPs\n", + "image 1/1 /content/zidane.jpg: 384x640 2 persons, 1 tie, 78.0ms\n", + "Speed: 0.6ms pre-process, 78.0ms inference, 29.2ms postprocess per image at shape (1, 3, 640, 640)\n", + "Results saved to \u001b[1mruns/detect/predict\u001b[0m\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "hkAzDWJ7cWTr" + }, + "source": [ + "        \n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "0eq1SMWl6Sfn" + }, + "source": [ + "# 2. Val\n", + "Validate a model's accuracy on the [COCO](https://cocodataset.org/#home) dataset's `val` or `test` splits. Models are downloaded automatically from the [latest YOLOv8 release](https://github.com/ultralytics/ultralytics/releases). To show results by class use the `--verbose` flag." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "WQPtK1QYVaD_" + }, + "source": [ + "# Download COCO val\n", + "import torch\n", + "torch.hub.download_url_to_file('https://ultralytics.com/assets/coco2017val.zip', 'tmp.zip') # download (780M - 5000 images)\n", + "!unzip -q tmp.zip -d ../datasets && rm tmp.zip # unzip" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "X58w8JLpMnjH", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "a3853c39-e2d3-40ca-bdab-32880af1751b" + }, + "source": [ + "# Validate YOLOv8n on COCO128 val\n", + "!yolo task=detect mode=val model=yolov8n.pt data=coco128.yaml" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Ultralytics YOLO 🚀 0.0.59 Python-3.8.16 torch-1.13.0+cu116 CUDA:0 (Tesla T4, 15110MiB)\n", + "Fusing layers... \n", + "YOLOv8n summary: 168 layers, 3151904 parameters, 0 gradients, 8.7 GFLOPs\n", + "\n", + "Dataset not found ⚠️, missing paths ['/datasets/coco128/images/train2017']\n", + "Downloading https://ultralytics.com/assets/coco128.zip to coco128.zip...\n", + "100% 6.66M/6.66M [00:03<00:00, 2.27MB/s]\n", + "Dataset download success ✅ (4.8s), saved to \u001b[1m/datasets\u001b[0m\n", + "Downloading https://ultralytics.com/assets/Arial.ttf to /root/.config/Ultralytics/Arial.ttf...\n", + "100% 755k/755k [00:00<00:00, 115MB/s]\n", + "\u001b[34m\u001b[1mval: \u001b[0mScanning /datasets/coco128/labels/train2017... 126 images, 2 backgrounds, 0 corrupt: 100% 128/128 [00:00<00:00, 948.62it/s] \n", + "\u001b[34m\u001b[1mval: \u001b[0mNew cache created: /datasets/coco128/labels/train2017.cache\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100% 8/8 [00:07<00:00, 1.08it/s]\n", + " all 128 929 0.639 0.523 0.608 0.447\n", + " person 128 254 0.82 0.679 0.767 0.54\n", + " bicycle 128 6 0.369 0.167 0.294 0.203\n", + " car 128 46 0.746 0.196 0.24 0.147\n", + " motorcycle 128 5 0.687 0.8 0.898 0.707\n", + " airplane 128 6 0.645 0.667 0.851 0.689\n", + " bus 128 7 0.743 0.714 0.727 0.633\n", + " train 128 3 0.532 0.667 0.741 0.554\n", + " truck 128 12 0.667 0.333 0.448 0.263\n", + " boat 128 6 0.226 0.167 0.332 0.184\n", + " traffic light 128 14 0.535 0.143 0.193 0.146\n", + " stop sign 128 2 0.601 0.5 0.828 0.68\n", + " bench 128 9 0.716 0.444 0.518 0.292\n", + " bird 128 16 0.815 0.75 0.859 0.499\n", + " cat 128 4 0.782 0.909 0.945 0.749\n", + " dog 128 9 0.603 0.889 0.764 0.58\n", + " horse 128 2 0.73 1 0.995 0.572\n", + " elephant 128 17 0.794 0.882 0.934 0.74\n", + " bear 128 1 0.615 1 0.995 0.995\n", + " zebra 128 4 0.837 1 0.995 0.964\n", + " giraffe 128 9 0.717 1 0.975 0.676\n", + " backpack 128 6 0.584 0.333 0.432 0.276\n", + " umbrella 128 18 0.83 0.556 0.674 0.409\n", + " handbag 128 19 1 0.11 0.255 0.111\n", + " tie 128 7 0.669 0.714 0.711 0.519\n", + " suitcase 128 4 0.773 0.867 0.945 0.644\n", + " frisbee 128 5 0.586 0.8 0.732 0.686\n", + " skis 128 1 0.733 1 0.995 0.497\n", + " snowboard 128 7 1 0.546 0.753 0.516\n", + " sports ball 128 6 0.574 0.5 0.464 0.263\n", + " kite 128 10 0.597 0.5 0.548 0.22\n", + " baseball bat 128 4 0.496 0.5 0.269 0.12\n", + " baseball glove 128 7 0.598 0.429 0.429 0.293\n", + " skateboard 128 5 0.806 0.6 0.635 0.411\n", + " tennis racket 128 7 0.955 0.429 0.564 0.373\n", + " bottle 128 18 0.601 0.444 0.444 0.281\n", + " wine glass 128 16 0.815 0.562 0.604 0.377\n", + " cup 128 36 0.606 0.25 0.425 0.308\n", + " fork 128 6 0.518 0.167 0.17 0.169\n", + " knife 128 16 0.646 0.438 0.581 0.365\n", + " spoon 128 22 0.491 0.227 0.334 0.186\n", + " bowl 128 28 0.643 0.536 0.632 0.498\n", + " banana 128 1 0 0 0.142 0.0529\n", + " sandwich 128 2 0.226 0.5 0.414 0.414\n", + " orange 128 4 1 0 0.87 0.562\n", + " broccoli 128 11 0.416 0.182 0.239 0.197\n", + " carrot 128 24 0.719 0.458 0.583 0.377\n", + " hot dog 128 2 0.269 0.5 0.695 0.695\n", + " pizza 128 5 0.673 1 0.995 0.859\n", + " donut 128 14 0.673 1 0.976 0.886\n", + " cake 128 4 0.627 1 0.945 0.824\n", + " chair 128 35 0.428 0.543 0.498 0.251\n", + " couch 128 6 0.47 0.5 0.673 0.537\n", + " potted plant 128 14 0.808 0.643 0.714 0.501\n", + " bed 128 3 0.842 0.667 0.741 0.559\n", + " dining table 128 13 0.413 0.538 0.47 0.378\n", + " toilet 128 2 0.618 0.5 0.62 0.596\n", + " tv 128 2 0.517 0.5 0.828 0.712\n", + " laptop 128 3 1 0 0.592 0.422\n", + " mouse 128 2 1 0 0.0768 0.023\n", + " remote 128 8 0.843 0.5 0.512 0.439\n", + " cell phone 128 8 0.254 0.0636 0.109 0.0757\n", + " microwave 128 3 0.459 1 0.995 0.798\n", + " oven 128 5 0.436 0.4 0.391 0.31\n", + " sink 128 6 0.265 0.167 0.198 0.124\n", + " refrigerator 128 5 0.654 0.4 0.61 0.468\n", + " book 128 29 0.466 0.0619 0.394 0.178\n", + " clock 128 9 0.653 0.778 0.778 0.595\n", + " vase 128 2 0.18 1 0.695 0.695\n", + " scissors 128 1 1 0 0.124 0.0224\n", + " teddy bear 128 21 0.756 0.429 0.573 0.341\n", + " toothbrush 128 5 1 0.37 0.803 0.533\n", + "Speed: 2.6ms pre-process, 5.2ms inference, 0.0ms loss, 3.9ms post-process per image\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ZY2VXXXu74w5" + }, + "source": [ + "# 3. Train\n", + "\n", + "

\n", + "\n", + "Train YOLOv8 on detection, segmentation and classification datasets." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "1NcFxRcFdJ_O", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "a264b615-5f73-4b84-c708-61f15a7e5c03" + }, + "source": [ + "# Train YOLOv8n on COCO128 for 3 epochs\n", + "!yolo task=detect mode=train model=yolov8n.pt data=coco128.yaml epochs=3 imgsz=640" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[34m\u001b[1myolo/engine/trainer: \u001b[0mtask=detect, mode=train, model=yolov8n.pt, data=coco128.yaml, epochs=3, patience=50, batch=16, imgsz=640, save=True, cache=False, device=, workers=8, project=None, name=None, exist_ok=False, pretrained=False, optimizer=SGD, verbose=False, seed=0, deterministic=True, single_cls=False, image_weights=False, rect=False, cos_lr=False, close_mosaic=10, resume=False, overlap_mask=True, mask_ratio=4, dropout=False, val=True, save_json=False, save_hybrid=False, conf=0.001, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=ultralytics/assets, show=False, save_txt=False, save_conf=False, save_crop=False, hide_labels=False, hide_conf=False, vid_stride=1, line_thickness=3, visualize=False, augment=False, agnostic_nms=False, retina_masks=False, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=False, opset=17, workspace=4, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, fl_gamma=0.0, label_smoothing=0.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0, hydra={'output_subdir': None, 'run': {'dir': '.'}}, v5loader=False, save_dir=runs/detect/train\n", + "Ultralytics YOLO 🚀 0.0.59 Python-3.8.16 torch-1.13.0+cu116 CUDA:0 (Tesla T4, 15110MiB)\n", + "\n", + " from n params module arguments \n", + " 0 -1 1 464 ultralytics.nn.modules.Conv [3, 16, 3, 2] \n", + " 1 -1 1 4672 ultralytics.nn.modules.Conv [16, 32, 3, 2] \n", + " 2 -1 1 7360 ultralytics.nn.modules.C2f [32, 32, 1, True] \n", + " 3 -1 1 18560 ultralytics.nn.modules.Conv [32, 64, 3, 2] \n", + " 4 -1 2 49664 ultralytics.nn.modules.C2f [64, 64, 2, True] \n", + " 5 -1 1 73984 ultralytics.nn.modules.Conv [64, 128, 3, 2] \n", + " 6 -1 2 197632 ultralytics.nn.modules.C2f [128, 128, 2, True] \n", + " 7 -1 1 295424 ultralytics.nn.modules.Conv [128, 256, 3, 2] \n", + " 8 -1 1 460288 ultralytics.nn.modules.C2f [256, 256, 1, True] \n", + " 9 -1 1 164608 ultralytics.nn.modules.SPPF [256, 256, 5] \n", + " 10 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] \n", + " 11 [-1, 6] 1 0 ultralytics.nn.modules.Concat [1] \n", + " 12 -1 1 148224 ultralytics.nn.modules.C2f [384, 128, 1] \n", + " 13 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] \n", + " 14 [-1, 4] 1 0 ultralytics.nn.modules.Concat [1] \n", + " 15 -1 1 37248 ultralytics.nn.modules.C2f [192, 64, 1] \n", + " 16 -1 1 36992 ultralytics.nn.modules.Conv [64, 64, 3, 2] \n", + " 17 [-1, 12] 1 0 ultralytics.nn.modules.Concat [1] \n", + " 18 -1 1 123648 ultralytics.nn.modules.C2f [192, 128, 1] \n", + " 19 -1 1 147712 ultralytics.nn.modules.Conv [128, 128, 3, 2] \n", + " 20 [-1, 9] 1 0 ultralytics.nn.modules.Concat [1] \n", + " 21 -1 1 493056 ultralytics.nn.modules.C2f [384, 256, 1] \n", + " 22 [15, 18, 21] 1 897664 ultralytics.nn.modules.Detect [80, [64, 128, 256]] \n", + "Model summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPs\n", + "\n", + "Transferred 355/355 items from pretrained weights\n", + "\u001b[34m\u001b[1moptimizer:\u001b[0m SGD(lr=0.01) with parameter groups 57 weight(decay=0.0), 64 weight(decay=0.0005), 63 bias\n", + "\u001b[34m\u001b[1mtrain: \u001b[0mScanning /datasets/coco128/labels/train2017.cache... 126 images, 2 backgrounds, 0 corrupt: 100% 128/128 [00:00