diff --git a/README.md b/README.md index 8ffef70..4e314c2 100644 --- a/README.md +++ b/README.md @@ -56,11 +56,17 @@ To request an Enterprise License please complete the form at [Ultralytics Licens
yolo detect train
|
- | Instance Segment | `segment` | yolo segment train
|
- | Classification | `classify` | yolo classify train
|
+Where:
-=== "Prediction"
+- `TASK` (optional) is one of `[detect, segment, classify]`. If it is not passed explicitly YOLOv8 will try to guess
+ the `TASK` from the model type.
+- `MODE` (required) is one of `[train, val, predict, export]`
+- `ARGS` (optional) are any number of custom `arg=value` pairs like `imgsz=320` that override defaults.
+ For a full list of available `ARGS` see the [Configuration](config.md) page.
- | | `task` | snippet |
- |------------------|------------|--------------------------------------------------------------|
- | Detection | `detect` | yolo detect predict
|
- | Instance Segment | `segment` | yolo segment predict
|
- | Classification | `classify` | yolo classify predict
|
+!!! note ""
-=== "Validation"
+ Note: Arguments MUST be passed as `arg=val` with an equals sign and a space between `arg=val` pairs
- | | `task` | snippet |
- |------------------|------------|-----------------------------------------------------------|
- | Detection | `detect` | yolo detect val
|
- | Instance Segment | `segment` | yolo segment val
|
- | Classification | `classify` | yolo classify val
|
+ - `yolo predict model=yolov8n.pt imgsz=640 conf=0.25` ✅
+ - `yolo predict model yolov8n.pt imgsz 640 conf 0.25` ❌
+ - `yolo predict --model yolov8n.pt --imgsz 640 --conf 0.25` ❌
-!!! note ""
+## Train
+
+Train YOLOv8n on the COCO128 dataset for 100 epochs at image size 640. For a full list of available arguments see
+the [Configuration](config.md) page.
+
+!!! example ""
+
+ === "CLI"
+
+ ```bash
+ yolo detect train data=coco128.yaml model=yolov8n.pt epochs=100 imgsz=640
+ ```
+
+ === "Python"
+
+ ```python
+ from ultralytics import YOLO
+
+ # Load a model
+ model = YOLO("yolov8n.yaml") # build a new model from scratch
+ model = YOLO("yolov8n.pt") # load a pretrained model (recommended for training)
+
+ # Train the model
+ results = model.train(data="coco128.yaml", epochs=100, imgsz=640)
+ ```
+
+## Val
+
+Validate trained YOLOv8n model accuracy on the COCO128 dataset. No argument need to passed as the `model` retains it's
+training `data` and arguments as model attributes.
+
+!!! example ""
+
+ === "CLI"
+
+ ```bash
+ yolo detect val model=yolov8n.pt # val official model
+ yolo detect val model=path/to/best.pt # val custom model
+ ```
+
+ === "Python"
+
+ ```python
+ from ultralytics import YOLO
+
+ # Load a model
+ model = YOLO("yolov8n.pt") # load an official model
+ model = YOLO("path/to/best.pt") # load a custom model
+
+ # Validate the model
+ results = model.val() # no arguments needed, dataset and settings remembered
+ ```
+
+## Predict
- Note: The arguments don't require `'--'` prefix. These are reserved for special commands covered later
+Use a trained YOLOv8n model to run predictions on images.
+
+!!! example ""
+
+ === "CLI"
+
+ ```bash
+ yolo detect predict model=yolov8n.pt source="https://ultralytics.com/images/bus.jpg" # predict with official model
+ yolo detect predict model=path/to/best.pt source="https://ultralytics.com/images/bus.jpg" # predict with custom model
+ ```
+
+ === "Python"
+
+ ```python
+ from ultralytics import YOLO
+
+ # Load a model
+ model = YOLO("yolov8n.pt") # load an official model
+ model = YOLO("path/to/best.pt") # load a custom model
+
+ # Predict with the model
+ results = model("https://ultralytics.com/images/bus.jpg") # predict on an image
+ ```
+
+## Export
+
+Export a YOLOv8n model to a different format like ONNX, CoreML, etc.
+
+!!! example ""
+
+ === "CLI"
+
+ ```bash
+ yolo export model=yolov8n.pt format=onnx # export official model
+ yolo export model=path/to/best.pt format=onnx # export custom trained model
+ ```
+
+ === "Python"
+
+ ```python
+ from ultralytics import YOLO
+
+ # Load a model
+ model = YOLO("yolov8n.pt") # load an official model
+ model = YOLO("path/to/best.pt") # load a custom trained
+
+ # Export the model
+ model.export(format="onnx")
+ ```
+
+ Available YOLOv8 export formats include:
+
+ | Format | `format=` | Model |
+ |----------------------------------------------------------------------------|--------------------|---------------------------|
+ | [PyTorch](https://pytorch.org/) | - | `yolov8n.pt` |
+ | [TorchScript](https://pytorch.org/docs/stable/jit.html) | `torchscript` | `yolov8n.torchscript` |
+ | [ONNX](https://onnx.ai/) | `onnx` | `yolov8n.onnx` |
+ | [OpenVINO](https://docs.openvino.ai/latest/index.html) | `openvino` | `yolov8n_openvino_model/` |
+ | [TensorRT](https://developer.nvidia.com/tensorrt) | `engine` | `yolov8n.engine` |
+ | [CoreML](https://github.com/apple/coremltools) | `coreml` | `yolov8n.mlmodel` |
+ | [TensorFlow SavedModel](https://www.tensorflow.org/guide/saved_model) | `saved_model` | `yolov8n_saved_model/` |
+ | [TensorFlow GraphDef](https://www.tensorflow.org/api_docs/python/tf/Graph) | `pb` | `yolov8n.pb` |
+ | [TensorFlow Lite](https://www.tensorflow.org/lite) | `tflite` | `yolov8n.tflite` |
+ | [TensorFlow Edge TPU](https://coral.ai/docs/edgetpu/models-intro/) | `edgetpu` | `yolov8n_edgetpu.tflite` |
+ | [TensorFlow.js](https://www.tensorflow.org/js) | `tfjs` | `yolov8n_web_model/` |
+ | [PaddlePaddle](https://github.com/PaddlePaddle) | `paddle` | `yolov8n_paddle_model/` |
---
-## Overriding default config arguments
+## Overriding default arguments
-Default arguments can be overriden by simply passing them as arguments in the CLI.
+Default arguments can be overriden by simply passing them as arguments in the CLI in `arg=value` pairs.
!!! tip ""
- === "Syntax"
+ === "Example 1"
+ Train a detection model for `10 epochs` with `learning_rate` of `0.01`
```bash
- yolo task mode arg=val...
+ yolo detect train data=coco128.yaml model=yolov8n.pt epochs=10 lr0=0.01
```
- === "Example"
- Perform detection training for `10 epochs` with `learning_rate` of `0.01`
+ === "Example 2"
+ Predict a YouTube video using a pretrained segmentation model at image size 320:
```bash
- yolo detect train epochs=10 lr0=0.01
+ yolo segment predict model=yolov8n-seg.pt source=https://youtu.be/Zgi9g1ksQHc imgsz=320
+ ```
+
+ === "Example 3"
+ Validate a pretrained detection model at batch-size 1 and image size 640:
+ ```bash
+ yolo detect val model=yolov8n.pt data=coco128.yaml batch=1 imgsz=640
```
---
## Overriding default config file
-You can override config file entirely by passing a new file. You can create a copy of default config file in your
-current working dir as follows:
+You can override the `default.yaml` config file entirely by passing a new file with the `cfg` arguments,
+i.e. `cfg=custom.yaml`.
-```bash
-yolo copy-config
-```
+To do this first create a copy of `default.yaml` in your current working dir with the `yolo copy-config` command.
-You can then use `cfg=default_copy.yaml` command to pass the new config file along with any addition args:
+This will create `default_copy.yaml`, which you can then pass as `cfg=default_copy.yaml` along with any additional args,
+like `imgsz=320` in this example:
-```bash
-yolo cfg=default_copy.yaml args...
-```
+!!! example ""
-??? example
-
- === "Command"
+ === "CLI"
```bash
yolo copy-config
- yolo cfg=default_copy.yaml args...
- ```
+ yolo cfg=default_copy.yaml imgsz=320
+ ```
\ No newline at end of file
diff --git a/ultralytics/__init__.py b/ultralytics/__init__.py
index 6a1aeec..6ace83f 100644
--- a/ultralytics/__init__.py
+++ b/ultralytics/__init__.py
@@ -1,9 +1,9 @@
# Ultralytics YOLO 🚀, GPL-3.0 license
-__version__ = "8.0.7"
+__version__ = "8.0.8"
-from ultralytics.hub import checks
from ultralytics.yolo.engine.model import YOLO
from ultralytics.yolo.utils import ops
+from ultralytics.yolo.utils.checks import check_yolo as checks
__all__ = ["__version__", "YOLO", "hub", "checks"] # allow simpler import
diff --git a/ultralytics/hub/__init__.py b/ultralytics/hub/__init__.py
index 9c945d5..4f19039 100644
--- a/ultralytics/hub/__init__.py
+++ b/ultralytics/hub/__init__.py
@@ -1,38 +1,14 @@
# Ultralytics YOLO 🚀, GPL-3.0 license
-import os
-import shutil
-
-import psutil
import requests
-from IPython import display # to display images and clear console output
from ultralytics.hub.auth import Auth
from ultralytics.hub.session import HubTrainingSession
from ultralytics.hub.utils import PREFIX, split_key
-from ultralytics.yolo.utils import LOGGER, emojis, is_colab
-from ultralytics.yolo.utils.torch_utils import select_device
+from ultralytics.yolo.utils import LOGGER, emojis
from ultralytics.yolo.v8.detect import DetectionTrainer
-def checks(verbose=True):
- if is_colab():
- shutil.rmtree('sample_data', ignore_errors=True) # remove colab /sample_data directory
-
- if verbose:
- # System info
- gib = 1 << 30 # bytes per GiB
- ram = psutil.virtual_memory().total
- total, used, free = shutil.disk_usage("/")
- display.clear_output()
- s = f'({os.cpu_count()} CPUs, {ram / gib:.1f} GB RAM, {(total - free) / gib:.1f}/{total / gib:.1f} GB disk)'
- else:
- s = ''
-
- select_device(newline=False)
- LOGGER.info(f'Setup complete ✅ {s}')
-
-
def start(key=''):
# Start training models with Ultralytics HUB. Usage: from src.ultralytics import start; start('API_KEY')
def request_api_key(attempts=0):
diff --git a/ultralytics/yolo/cli.py b/ultralytics/yolo/cli.py
index 395fb44..7dc297e 100644
--- a/ultralytics/yolo/cli.py
+++ b/ultralytics/yolo/cli.py
@@ -4,13 +4,53 @@ import argparse
import shutil
from pathlib import Path
-from hydra import compose, initialize
-
-from ultralytics import hub, yolo
-from ultralytics.yolo.utils import DEFAULT_CONFIG, HELP_MSG, LOGGER, PREFIX, print_settings, yaml_load
+from ultralytics import __version__, yolo
+from ultralytics.yolo.utils import DEFAULT_CONFIG, LOGGER, PREFIX, checks, print_settings, yaml_load
DIR = Path(__file__).parent
+CLI_HELP_MSG = \
+ """
+ YOLOv8 CLI Usage examples:
+
+ 1. Install the ultralytics package:
+
+ pip install ultralytics
+
+ 2. Train, Val, Predict and Export using 'yolo' commands of the form:
+
+ yolo TASK MODE ARGS
+
+ Where TASK (optional) is one of [detect, segment, classify]
+ MODE (required) is one of [train, val, predict, export]
+ ARGS (optional) are any number of custom 'arg=value' pairs like 'imgsz=320' that override defaults.
+ For a full list of available ARGS see https://docs.ultralytics.com/config.
+
+ Train a detection model for 10 epochs with an initial learning_rate of 0.01
+ yolo detect train data=coco128.yaml model=yolov8n.pt epochs=10 lr0=0.01
+
+ Predict a YouTube video using a pretrained segmentation model at image size 320:
+ yolo segment predict model=yolov8n-seg.pt source=https://youtu.be/Zgi9g1ksQHc imgsz=320
+
+ Validate a pretrained detection model at batch-size 1 and image size 640:
+ yolo detect val model=yolov8n.pt data=coco128.yaml batch=1 imgsz=640
+
+ Export a YOLOv8n classification model to ONNX format at image size 224 by 128 (no TASK required)
+ yolo export model=yolov8n-cls.pt format=onnx imgsz=224,128
+
+ 3. Run special commands:
+
+ yolo help
+ yolo checks
+ yolo version
+ yolo settings
+ yolo copy-config
+
+ Docs: https://docs.ultralytics.com/cli
+ Community: https://community.ultralytics.com
+ GitHub: https://github.com/ultralytics/ultralytics
+ """
+
def cli(cfg):
"""
@@ -28,20 +68,16 @@ def cli(cfg):
task, mode = cfg.task.lower(), cfg.mode.lower()
# Mapping from task to module
- task_module_map = {"detect": yolo.v8.detect, "segment": yolo.v8.segment, "classify": yolo.v8.classify}
- module = task_module_map.get(task)
+ tasks = {"detect": yolo.v8.detect, "segment": yolo.v8.segment, "classify": yolo.v8.classify}
+ module = tasks.get(task)
if not module:
- raise SyntaxError(f"task not recognized. Choices are {', '.join(task_module_map.keys())}")
+ raise SyntaxError(f"yolo task={task} is invalid. Valid tasks are: {', '.join(tasks.keys())}\n{CLI_HELP_MSG}")
# Mapping from mode to function
- mode_func_map = {
- "train": module.train,
- "val": module.val,
- "predict": module.predict,
- "export": yolo.engine.exporter.export}
- func = mode_func_map.get(mode)
+ modes = {"train": module.train, "val": module.val, "predict": module.predict, "export": yolo.engine.exporter.export}
+ func = modes.get(mode)
if not func:
- raise SyntaxError(f"mode not recognized. Choices are {', '.join(mode_func_map.keys())}")
+ raise SyntaxError(f"yolo mode={mode} is invalid. Valid modes are: {', '.join(modes.keys())}\n{CLI_HELP_MSG}")
func(cfg)
@@ -68,8 +104,9 @@ def entrypoint():
tasks = 'detect', 'segment', 'classify'
modes = 'train', 'val', 'predict', 'export'
special_modes = {
- 'checks': hub.checks,
- 'help': lambda: LOGGER.info(HELP_MSG),
+ 'help': lambda: LOGGER.info(CLI_HELP_MSG),
+ 'checks': checks.check_yolo,
+ 'version': lambda: LOGGER.info(__version__),
'settings': print_settings,
'copy-config': copy_default_config}
@@ -87,8 +124,17 @@ def entrypoint():
return
elif a in defaults and defaults[a] is False:
overrides.append(f'{a}=True') # auto-True for default False args, i.e. yolo show
+ elif a in defaults:
+ raise SyntaxError(f"'{a}' is a valid YOLO argument but is missing an '=' sign to set its value, "
+ f"i.e. try '{a}={defaults[a]}'"
+ f"\n{CLI_HELP_MSG}")
else:
- raise (SyntaxError(f"'{a}' is not a valid yolo argument\n{HELP_MSG}"))
+ raise SyntaxError(
+ f"'{a}' is not a valid YOLO argument. For a full list of valid arguments see "
+ f"https://github.com/ultralytics/ultralytics/blob/main/ultralytics/yolo/configs/default.yaml"
+ f"\n{CLI_HELP_MSG}")
+
+ from hydra import compose, initialize
with initialize(version_base=None, config_path=str(DEFAULT_CONFIG.parent.relative_to(DIR)), job_name="YOLO"):
cfg = compose(config_name=DEFAULT_CONFIG.name, overrides=overrides)
diff --git a/ultralytics/yolo/utils/checks.py b/ultralytics/yolo/utils/checks.py
index ef388c6..f3e27c5 100644
--- a/ultralytics/yolo/utils/checks.py
+++ b/ultralytics/yolo/utils/checks.py
@@ -3,7 +3,9 @@
import glob
import inspect
import math
+import os
import platform
+import shutil
import urllib
from pathlib import Path
from subprocess import check_output
@@ -12,10 +14,12 @@ from typing import Optional
import cv2
import numpy as np
import pkg_resources as pkg
+import psutil
import torch
+from IPython import display
from ultralytics.yolo.utils import (AUTOINSTALL, FONT, LOGGER, ROOT, USER_CONFIG_DIR, TryExcept, colorstr, emojis,
- is_docker, is_jupyter_notebook)
+ is_colab, is_docker, is_jupyter_notebook)
def is_ascii(s) -> bool:
@@ -245,6 +249,26 @@ def check_imshow(warn=False):
return False
+def check_yolo(verbose=True):
+ from ultralytics.yolo.utils.torch_utils import select_device
+
+ if is_colab():
+ shutil.rmtree('sample_data', ignore_errors=True) # remove colab /sample_data directory
+
+ if verbose:
+ # System info
+ gib = 1 << 30 # bytes per GiB
+ ram = psutil.virtual_memory().total
+ total, used, free = shutil.disk_usage("/")
+ display.clear_output()
+ s = f'({os.cpu_count()} CPUs, {ram / gib:.1f} GB RAM, {(total - free) / gib:.1f}/{total / gib:.1f} GB disk)'
+ else:
+ s = ''
+
+ select_device(newline=False)
+ LOGGER.info(f'Setup complete ✅ {s}')
+
+
def git_describe(path=ROOT): # path must be a directory
# Return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe
try: