diff --git a/README.md b/README.md
index 416cef9..358e377 100644
--- a/README.md
+++ b/README.md
@@ -10,7 +10,7 @@
-
+
diff --git a/ultralytics/__init__.py b/ultralytics/__init__.py
index 1e38860..1b84830 100644
--- a/ultralytics/__init__.py
+++ b/ultralytics/__init__.py
@@ -1,6 +1,6 @@
# Ultralytics YOLO 🚀, GPL-3.0 license
-__version__ = "8.0.0"
+__version__ = "8.0.2"
from ultralytics.hub import checks
from ultralytics.yolo.engine.model import YOLO
diff --git a/ultralytics/models/README.md b/ultralytics/models/README.md
index f81008e..7d72657 100644
--- a/ultralytics/models/README.md
+++ b/ultralytics/models/README.md
@@ -1,24 +1,36 @@
-## Models HUB
+## Models
-Here are the models that are supported out-of-the-box with Ultralytics. For a detailed view and navigation, visit [model hub](<>) section of the docs.
+Welcome to the Ultralytics Models directory! Here you will find a wide variety of pre-configured model configuration
+files (`*.yaml`s) that can be used to create custom YOLO models. The models in this directory have been expertly crafted
+and fine-tuned by the Ultralytics team to provide the best performance for a wide range of object detection and image
+segmentation tasks.
+
+These model configurations cover a wide range of scenarios, from simple object detection to more complex tasks like
+instance segmentation and object tracking. They are also designed to run efficiently on a variety of hardware platforms,
+from CPUs to GPUs. Whether you are a seasoned machine learning practitioner or just getting started with YOLO, this
+directory provides a great starting point for your custom model development needs.
+
+To get started, simply browse through the models in this directory and find one that best suits your needs. Once you've
+selected a model, you can use the provided `*.yaml` file to train and deploy your custom YOLO model with ease. See full
+details at the Ultralytics [Docs](https://docs.ultralytics.com), and if you need help or have any questions, feel free
+to reach out to the Ultralytics team for support. So, don't wait, start creating your custom YOLO model now!
### Usage
-You can simply set the `model` parameter to any available yaml config or pretained weights
+Model `*.yaml` files may be used directly in the Command Line Interface (CLI) with a `yolo` command:
```bash
-yolo task=... mode=... model=yolov5n.yaml
+yolo task=detect mode=train model=yolov8n.yaml data=coco128.yaml epochs=100
```
-| Model | Version/ | size (pixels) | mAPval 50-95 | Speed CPU b1 (ms) | params (M) | FLOPs @640 (B) | model file | Pretrained Weights |
-| ------------------ | -------- | ------------- | ------------ | ----------------- | ---------- | -------------- | ------------- | ------------------ |
-| YOLOv5n | v6.3 | 640 | 28.0 | 45 | 1.9 | 4.5 | yolov5n.yaml | - |
-| YOLOv5s | - | 640 | 37.4 | 98 | 7.2 | 16.5 | yolov5s.yaml | - |
-| YOLOv5m | - | 640 | 45.4 | 224 | 21.2 | 49.0 | yolov5m.yaml | - |
-| YOLOv5l | - | 640 | 49.0 | 430 | 46.5 | 109.1 | yolov5l.yaml | - |
-| YOLOv5x | - | 640 | 50.7 | 766 | 86.7 | 205.7 | yolov5x.yaml | - |
-| YOLOv5n6 | - | 1280 | 36.0 | 153 | 3.2 | 4.6 | yolov5n6.yaml | - |
-| YOLOv5s6 | - | 1280 | 44.8 | 385 | 12.6 | 16.8 | yolov5s6.yaml | - |
-| YOLOv5m6 | - | 1280 | 51.3 | 887 | 35.7 | 50.0 | yolov5m6.yaml | - |
-| YOLOv5l6 | - | 1280 | 53.7 | 1784 | 76.8 | 111.4 | yolov5l6.yaml | - |
-| YOLOv5x6 + \[TTA\] | - | 1280 1536 | 55.0 55.8 | 3136 - | 140.7 - | 209.8 - | yolov5x6.yaml | - |
+They may also be used directly in a Python environment, and accepts the same
+[arguments](https://docs.ultralytics.com/config/) as in the CLI example above:
+
+```python
+from ultralytics import YOLO
+
+model = YOLO("yolov8n.yaml") # build a YOLOv8n model from scratch
+
+model.info() # display model information
+model.train(data="coco128.yaml", epochs=100) # train the model
+```
diff --git a/ultralytics/yolo/utils/callbacks/base.py b/ultralytics/yolo/utils/callbacks/base.py
index fedf0ea..689bf15 100644
--- a/ultralytics/yolo/utils/callbacks/base.py
+++ b/ultralytics/yolo/utils/callbacks/base.py
@@ -143,8 +143,7 @@ def add_integration_callbacks(instance):
from .comet import callbacks as comet_callbacks
from .hub import callbacks as hub_callbacks
from .tensorboard import callbacks as tb_callbacks
- from .wb import callbacks as wb_callbacks
- for x in clearml_callbacks, comet_callbacks, hub_callbacks, tb_callbacks, wb_callbacks:
+ for x in clearml_callbacks, comet_callbacks, hub_callbacks, tb_callbacks:
for k, v in x.items():
instance.callbacks[k].append(v) # callback[name].append(func)
diff --git a/ultralytics/yolo/utils/callbacks/wb.py b/ultralytics/yolo/utils/callbacks/wb.py
deleted file mode 100644
index ce4db81..0000000
--- a/ultralytics/yolo/utils/callbacks/wb.py
+++ /dev/null
@@ -1,48 +0,0 @@
-# Ultralytics YOLO 🚀, GPL-3.0 license
-
-from ultralytics.yolo.utils.torch_utils import get_flops, get_num_params
-
-try:
- import wandb
-
- assert hasattr(wandb, '__version__')
-except (ImportError, AssertionError):
- wandb = None
-
-
-def on_pretrain_routine_start(trainer):
- wandb.init(project=trainer.args.project or "YOLOv8", name=trainer.args.name, config=dict(
- trainer.args)) if not wandb.run else wandb.run
-
-
-def on_fit_epoch_end(trainer):
- wandb.run.log(trainer.metrics, step=trainer.epoch + 1)
- if trainer.epoch == 0:
- model_info = {
- "model/parameters": get_num_params(trainer.model),
- "model/GFLOPs": round(get_flops(trainer.model), 3),
- "model/speed(ms)": round(trainer.validator.speed[1], 3)}
- wandb.run.log(model_info, step=trainer.epoch + 1)
-
-
-def on_train_epoch_end(trainer):
- wandb.run.log(trainer.label_loss_items(trainer.tloss, prefix="train"), step=trainer.epoch + 1)
- wandb.run.log(trainer.lr, step=trainer.epoch + 1)
- if trainer.epoch == 1:
- wandb.run.log({f.stem: wandb.Image(str(f))
- for f in trainer.save_dir.glob('train_batch*.jpg')},
- step=trainer.epoch + 1)
-
-
-def on_train_end(trainer):
- art = wandb.Artifact(type="model", name=f"run_{wandb.run.id}_model")
- if trainer.best.exists():
- art.add_file(trainer.best)
- wandb.run.log_artifact(art)
-
-
-callbacks = {
- "on_pretrain_routine_start": on_pretrain_routine_start,
- "on_train_epoch_end": on_train_epoch_end,
- "on_fit_epoch_end": on_fit_epoch_end,
- "on_train_end": on_train_end} if wandb else {}