diff --git a/docs/reference/yolo/utils/checks.md b/docs/reference/yolo/utils/checks.md index 14bc9bd..48fd0bd 100644 --- a/docs/reference/yolo/utils/checks.md +++ b/docs/reference/yolo/utils/checks.md @@ -43,6 +43,11 @@ keywords: YOLO, Ultralytics, Utils, Checks, image sizing, version updates, font ### ::: ultralytics.yolo.utils.checks.check_requirements

+## check_torchvision +--- +### ::: ultralytics.yolo.utils.checks.check_torchvision +

+ ## check_suffix --- ### ::: ultralytics.yolo.utils.checks.check_suffix diff --git a/examples/tutorial.ipynb b/examples/tutorial.ipynb index 818bf7f..9bb7150 100644 --- a/examples/tutorial.ipynb +++ b/examples/tutorial.ipynb @@ -66,7 +66,7 @@ "import ultralytics\n", "ultralytics.checks()" ], - "execution_count": 1, + "execution_count": null, "outputs": [ { "output_type": "stream", @@ -102,7 +102,7 @@ "# Run inference on an image with YOLOv8n\n", "!yolo predict model=yolov8n.pt source='https://ultralytics.com/images/zidane.jpg'" ], - "execution_count": 2, + "execution_count": null, "outputs": [ { "output_type": "stream", @@ -169,7 +169,7 @@ "# Validate YOLOv8n on COCO128 val\n", "!yolo val model=yolov8n.pt data=coco128.yaml" ], - "execution_count": 3, + "execution_count": null, "outputs": [ { "output_type": "stream", @@ -293,7 +293,7 @@ "# Train YOLOv8n on COCO128 for 3 epochs\n", "!yolo train model=yolov8n.pt data=coco128.yaml epochs=3 imgsz=640" ], - "execution_count": 4, + "execution_count": null, "outputs": [ { "output_type": "stream", @@ -454,21 +454,21 @@ "- 💡 ProTip: Export to [TensorRT](https://developer.nvidia.com/tensorrt) for up to 5x GPU speedup.\n", "\n", "\n", - "| Format | `format=` | Model |\n", - "|----------------------------------------------------------------------------|--------------------|---------------------------|\n", - "| [PyTorch](https://pytorch.org/) | - | `yolov8n.pt` |\n", - "| [TorchScript](https://pytorch.org/docs/stable/jit.html) | `torchscript` | `yolov8n.torchscript` |\n", - "| [ONNX](https://onnx.ai/) | `onnx` | `yolov8n.onnx` |\n", - "| [OpenVINO](https://docs.openvino.ai/latest/index.html) | `openvino` | `yolov8n_openvino_model/` |\n", - "| [TensorRT](https://developer.nvidia.com/tensorrt) | `engine` | `yolov8n.engine` |\n", - "| [CoreML](https://github.com/apple/coremltools) | `coreml` | `yolov8n.mlmodel` |\n", - "| [TensorFlow SavedModel](https://www.tensorflow.org/guide/saved_model) | `saved_model` | `yolov8n_saved_model/` |\n", - "| [TensorFlow GraphDef](https://www.tensorflow.org/api_docs/python/tf/Graph) | `pb` | `yolov8n.pb` |\n", - "| [TensorFlow Lite](https://www.tensorflow.org/lite) | `tflite` | `yolov8n.tflite` |\n", - "| [TensorFlow Edge TPU](https://coral.ai/docs/edgetpu/models-intro/) | `edgetpu` | `yolov8n_edgetpu.tflite` |\n", - "| [TensorFlow.js](https://www.tensorflow.org/js) | `tfjs` | `yolov8n_web_model/` |\n", - "| [PaddlePaddle](https://github.com/PaddlePaddle) | `paddle` | `yolov8n_paddle_model/` |\n", - "\n" + "| Format | `format` Argument | Model |\n", + "|----------------------------------------------------------------------------|-------------------|---------------------------|\n", + "| [PyTorch](https://pytorch.org/) | - | `yolov8n.pt` |\n", + "| [TorchScript](https://pytorch.org/docs/stable/jit.html) | `torchscript` | `yolov8n.torchscript` |\n", + "| [ONNX](https://onnx.ai/) | `onnx` | `yolov8n.onnx` |\n", + "| [OpenVINO](https://docs.openvino.ai/latest/index.html) | `openvino` | `yolov8n_openvino_model/` |\n", + "| [TensorRT](https://developer.nvidia.com/tensorrt) | `engine` | `yolov8n.engine` |\n", + "| [CoreML](https://github.com/apple/coremltools) | `coreml` | `yolov8n.mlmodel` |\n", + "| [TensorFlow SavedModel](https://www.tensorflow.org/guide/saved_model) | `saved_model` | `yolov8n_saved_model/` |\n", + "| [TensorFlow GraphDef](https://www.tensorflow.org/api_docs/python/tf/Graph) | `pb` | `yolov8n.pb` |\n", + "| [TensorFlow Lite](https://www.tensorflow.org/lite) | `tflite` | `yolov8n.tflite` |\n", + "| [TensorFlow Edge TPU](https://coral.ai/docs/edgetpu/models-intro/) | `edgetpu` | `yolov8n_edgetpu.tflite` |\n", + "| [TensorFlow.js](https://www.tensorflow.org/js) | `tfjs` | `yolov8n_web_model/` |\n", + "| [PaddlePaddle](https://github.com/PaddlePaddle) | `paddle` | `yolov8n_paddle_model/` |\n", + "| [NCNN](https://github.com/Tencent/ncnn) | `ncnn` | `yolov8n_ncnn_model/` |\n" ], "metadata": { "id": "nPZZeNrLCQG6" @@ -486,7 +486,7 @@ "id": "CYIjW4igCjqD", "outputId": "fc41bf7a-0ea2-41a6-9ec5-dd0455af43bc" }, - "execution_count": 5, + "execution_count": null, "outputs": [ { "output_type": "stream", @@ -533,7 +533,7 @@ "results = model.train(data='coco128.yaml', epochs=3) # train the model\n", "results = model.val() # evaluate model performance on the validation set\n", "results = model('https://ultralytics.com/images/bus.jpg') # predict on an image\n", - "success = model.export(format='onnx') # export the model to ONNX format" + "results = model.export(format='onnx') # export the model to ONNX format" ], "metadata": { "id": "bpF9-vS_DAaf" @@ -677,9 +677,8 @@ "cell_type": "code", "source": [ "# Git clone and run tests on updates branch\n", - "!git clone https://github.com/ultralytics/ultralytics -b updates\n", - "%pip install -qe ultralytics\n", - "!pytest ultralytics/tests" + "!git clone https://github.com/ultralytics/ultralytics -b main\n", + "%pip install -qe ultralytics" ], "metadata": { "id": "uRKlwxSJdhd1" @@ -687,6 +686,18 @@ "execution_count": null, "outputs": [] }, + { + "cell_type": "code", + "source": [ + "# Run tests (Git clone only)\n", + "!pytest ultralytics/tests" + ], + "metadata": { + "id": "GtPlh7mcCGZX" + }, + "execution_count": null, + "outputs": [] + }, { "cell_type": "code", "source": [ diff --git a/ultralytics/__init__.py b/ultralytics/__init__.py index d337115..9f64b83 100644 --- a/ultralytics/__init__.py +++ b/ultralytics/__init__.py @@ -1,6 +1,6 @@ # Ultralytics YOLO 🚀, AGPL-3.0 license -__version__ = '8.0.132' +__version__ = '8.0.133' from ultralytics.hub import start from ultralytics.vit.rtdetr import RTDETR diff --git a/ultralytics/hub/session.py b/ultralytics/hub/session.py index 01b75fb..1a96d20 100644 --- a/ultralytics/hub/session.py +++ b/ultralytics/hub/session.py @@ -25,11 +25,11 @@ class HUBTrainingSession: model_id (str): Identifier for the YOLOv5 model being trained. model_url (str): URL for the model in Ultralytics HUB. api_url (str): API URL for the model in Ultralytics HUB. - auth_header (Dict): Authentication header for the Ultralytics HUB API requests. - rate_limits (Dict): Rate limits for different API calls (in seconds). - timers (Dict): Timers for rate limiting. - metrics_queue (Dict): Queue for the model's metrics. - model (Dict): Model data fetched from Ultralytics HUB. + auth_header (dict): Authentication header for the Ultralytics HUB API requests. + rate_limits (dict): Rate limits for different API calls (in seconds). + timers (dict): Timers for rate limiting. + metrics_queue (dict): Queue for the model's metrics. + model (dict): Model data fetched from Ultralytics HUB. alive (bool): Indicates if the heartbeat loop is active. """ diff --git a/ultralytics/nn/tasks.py b/ultralytics/nn/tasks.py index e05c53f..08f5b18 100644 --- a/ultralytics/nn/tasks.py +++ b/ultralytics/nn/tasks.py @@ -601,7 +601,7 @@ def attempt_load_one_weight(weight, device=None, inplace=True, fuse=False): def parse_model(d, ch, verbose=True): # model_dict, input_channels(3) - # Parse a YOLO model.yaml dictionary into a PyTorch model + """Parse a YOLO model.yaml dictionary into a PyTorch model.""" import ast # Args diff --git a/ultralytics/yolo/cfg/__init__.py b/ultralytics/yolo/cfg/__init__.py index 5908fa1..71a9022 100644 --- a/ultralytics/yolo/cfg/__init__.py +++ b/ultralytics/yolo/cfg/__init__.py @@ -171,8 +171,8 @@ def check_cfg_mismatch(base: Dict, custom: Dict, e=None): If any mismatched keys are found, the function prints out similar keys from the base list and exits the program. Args: - custom (Dict): a dictionary of custom configuration options - base (Dict): a dictionary of base configuration options + custom (dict): a dictionary of custom configuration options + base (dict): a dictionary of base configuration options """ custom = _handle_deprecation(custom) base, custom = (set(x.keys()) for x in (base, custom)) diff --git a/ultralytics/yolo/data/augment.py b/ultralytics/yolo/data/augment.py index f3c4483..e0c0a8f 100644 --- a/ultralytics/yolo/data/augment.py +++ b/ultralytics/yolo/data/augment.py @@ -642,7 +642,8 @@ class CopyPaste: class Albumentations: - # YOLOv8 Albumentations class (optional, only used if package is installed) + """YOLOv8 Albumentations class (optional, only used if package is installed)""" + def __init__(self, p=1.0): """Initialize the transform object for YOLO bbox formatted params.""" self.p = p @@ -819,7 +820,7 @@ def classify_albumentations( std=(1.0, 1.0, 1.0), # IMAGENET_STD auto_aug=False, ): - # YOLOv8 classification Albumentations (optional, only used if package is installed) + """YOLOv8 classification Albumentations (optional, only used if package is installed).""" prefix = colorstr('albumentations: ') try: import albumentations as A @@ -851,7 +852,8 @@ def classify_albumentations( class ClassifyLetterBox: - # YOLOv8 LetterBox class for image preprocessing, i.e. T.Compose([LetterBox(size), ToTensor()]) + """YOLOv8 LetterBox class for image preprocessing, i.e. T.Compose([LetterBox(size), ToTensor()])""" + def __init__(self, size=(640, 640), auto=False, stride=32): """Resizes image and crops it to center with max dimensions 'h' and 'w'.""" super().__init__() @@ -871,7 +873,8 @@ class ClassifyLetterBox: class CenterCrop: - # YOLOv8 CenterCrop class for image preprocessing, i.e. T.Compose([CenterCrop(size), ToTensor()]) + """YOLOv8 CenterCrop class for image preprocessing, i.e. T.Compose([CenterCrop(size), ToTensor()])""" + def __init__(self, size=640): """Converts an image from numpy array to PyTorch tensor.""" super().__init__() @@ -885,7 +888,8 @@ class CenterCrop: class ToTensor: - # YOLOv8 ToTensor class for image preprocessing, i.e. T.Compose([LetterBox(size), ToTensor()]) + """YOLOv8 ToTensor class for image preprocessing, i.e. T.Compose([LetterBox(size), ToTensor()]).""" + def __init__(self, half=False): """Initialize YOLOv8 ToTensor object with optional half-precision support.""" super().__init__() diff --git a/ultralytics/yolo/data/build.py b/ultralytics/yolo/data/build.py index 54d2d16..5499c76 100644 --- a/ultralytics/yolo/data/build.py +++ b/ultralytics/yolo/data/build.py @@ -63,7 +63,7 @@ class _RepeatSampler: def seed_worker(worker_id): # noqa - # Set dataloader worker seed https://pytorch.org/docs/stable/notes/randomness.html#dataloader + """Set dataloader worker seed https://pytorch.org/docs/stable/notes/randomness.html#dataloader.""" worker_seed = torch.initial_seed() % 2 ** 32 np.random.seed(worker_seed) random.seed(worker_seed) diff --git a/ultralytics/yolo/data/dataloaders/stream_loaders.py b/ultralytics/yolo/data/dataloaders/stream_loaders.py index f497cb1..d124a43 100644 --- a/ultralytics/yolo/data/dataloaders/stream_loaders.py +++ b/ultralytics/yolo/data/dataloaders/stream_loaders.py @@ -29,7 +29,8 @@ class SourceTypes: class LoadStreams: - # YOLOv8 streamloader, i.e. `yolo predict source='rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP streams` + """YOLOv8 streamloader, i.e. `yolo predict source='rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP streams`.""" + def __init__(self, sources='file.streams', imgsz=640, vid_stride=1): """Initialize instance variables and check for consistent input stream shapes.""" torch.backends.cudnn.benchmark = True # faster for fixed-size inference @@ -116,7 +117,8 @@ class LoadStreams: class LoadScreenshots: - # YOLOv8 screenshot dataloader, i.e. `yolo predict source=screen` + """YOLOv8 screenshot dataloader, i.e. `yolo predict source=screen`.""" + def __init__(self, source, imgsz=640): """source = [screen_number left top width height] (pixels).""" check_requirements('mss') @@ -158,7 +160,8 @@ class LoadScreenshots: class LoadImages: - # YOLOv8 image/video dataloader, i.e. `yolo predict source=image.jpg/vid.mp4` + """YOLOv8 image/video dataloader, i.e. `yolo predict source=image.jpg/vid.mp4`.""" + def __init__(self, path, imgsz=640, vid_stride=1): """Initialize the Dataloader and raise FileNotFoundError if file not found.""" if isinstance(path, str) and Path(path).suffix == '.txt': # *.txt file with img/vid/dir on each line diff --git a/ultralytics/yolo/data/utils.py b/ultralytics/yolo/data/utils.py index a4ce973..9829671 100644 --- a/ultralytics/yolo/data/utils.py +++ b/ultralytics/yolo/data/utils.py @@ -278,7 +278,7 @@ def check_cls_dataset(dataset: str, split=''): split (str, optional): The split of the dataset. Either 'val', 'test', or ''. Defaults to ''. Returns: - dict: A dictionary containing the following keys: + (dict): A dictionary containing the following keys: - 'train' (Path): The directory path containing the training set of the dataset. - 'val' (Path): The directory path containing the validation set of the dataset. - 'test' (Path): The directory path containing the test set of the dataset. diff --git a/ultralytics/yolo/engine/results.py b/ultralytics/yolo/engine/results.py index 4e9f6f3..7b33def 100644 --- a/ultralytics/yolo/engine/results.py +++ b/ultralytics/yolo/engine/results.py @@ -213,16 +213,18 @@ class Results(SimpleClass): assert type(line_width) == int, '`line_width` should be of int type, i.e, line_width=3' names = self.names - annotator = Annotator(deepcopy(self.orig_img if img is None else img), - line_width, - font_size, - font, - pil, - example=names) pred_boxes, show_boxes = self.boxes, boxes pred_masks, show_masks = self.masks, masks pred_probs, show_probs = self.probs, probs - keypoints = self.keypoints + annotator = Annotator( + deepcopy(self.orig_img if img is None else img), + line_width, + font_size, + font, + pil or (pred_probs is not None and show_probs), # Classify tasks default to pil=True + example=names) + + # Plot Segment results if pred_masks and show_masks: if img_gpu is None: img = LetterBox(pred_masks.shape[1:])(image=annotator.result()) @@ -231,6 +233,7 @@ class Results(SimpleClass): idx = pred_boxes.cls if pred_boxes else range(len(pred_masks)) annotator.masks(pred_masks.data, colors=[colors(x, True) for x in idx], im_gpu=img_gpu) + # Plot Detect results if pred_boxes and show_boxes: for d in reversed(pred_boxes): c, conf, id = int(d.cls), float(d.conf) if conf else None, None if d.id is None else int(d.id.item()) @@ -238,12 +241,15 @@ class Results(SimpleClass): label = (f'{name} {conf:.2f}' if conf else name) if labels else None annotator.box_label(d.xyxy.squeeze(), label, color=colors(c, True)) + # Plot Classify results if pred_probs is not None and show_probs: - text = f"{', '.join(f'{names[j] if names else j} {pred_probs.data[j]:.2f}' for j in pred_probs.top5)}, " - annotator.text((32, 32), text, txt_color=(255, 255, 255)) # TODO: allow setting colors + text = ',\n'.join(f'{names[j] if names else j} {pred_probs.data[j]:.2f}' for j in pred_probs.top5) + x = round(self.orig_shape[0] * 0.03) + annotator.text([x, x], text, txt_color=(255, 255, 255)) # TODO: allow setting colors - if keypoints is not None: - for k in reversed(keypoints.data): + # Plot Pose results + if self.keypoints is not None: + for k in reversed(self.keypoints.data): annotator.kpts(k, self.orig_shape, kpt_line=kpt_line) return annotator.result() diff --git a/ultralytics/yolo/utils/checks.py b/ultralytics/yolo/utils/checks.py index 0ea860c..5724b60 100644 --- a/ultralytics/yolo/utils/checks.py +++ b/ultralytics/yolo/utils/checks.py @@ -211,6 +211,7 @@ def check_requirements(requirements=ROOT.parent / 'requirements.txt', exclude=() """ prefix = colorstr('red', 'bold', 'requirements:') check_python() # check python version + check_torchvision() # check torch-torchvision compatibility file = None if isinstance(requirements, Path): # requirements.txt file file = requirements.resolve() @@ -255,6 +256,34 @@ def check_requirements(requirements=ROOT.parent / 'requirements.txt', exclude=() return True +def check_torchvision(): + """ + Checks the installed versions of PyTorch and Torchvision to ensure they're compatible. + + This function checks the installed versions of PyTorch and Torchvision, and warns if they're incompatible according + to the provided compatibility table based on https://github.com/pytorch/vision#installation. The + compatibility table is a dictionary where the keys are PyTorch versions and the values are lists of compatible + Torchvision versions. + """ + + import torchvision + + # Compatibility table + compatibility_table = {'2.0': ['0.15'], '1.13': ['0.14'], '1.12': ['0.13']} + + # Extract only the major and minor versions + v_torch = '.'.join(torch.__version__.split('+')[0].split('.')[:2]) + v_torchvision = '.'.join(torchvision.__version__.split('+')[0].split('.')[:2]) + + if v_torch in compatibility_table: + compatible_versions = compatibility_table[v_torch] + if all(pkg.parse_version(v_torchvision) != pkg.parse_version(v) for v in compatible_versions): + print(f'WARNING ⚠️ torchvision=={v_torchvision} is incompatible with torch=={v_torch}.\n' + f"Run 'pip install torchvision=={compatible_versions[0]}' to fix torchvision or " + "'pip install -U torch torchvision' to update both.\n" + 'For a full compatibility table see https://github.com/pytorch/vision#installation') + + def check_suffix(file='yolov8n.pt', suffix='.pt', msg=''): """Check file(s) for acceptable suffix.""" if file and suffix: @@ -402,7 +431,7 @@ def check_amp(model): def git_describe(path=ROOT): # path must be a directory - # Return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe + """Return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe.""" try: assert (Path(path) / '.git').is_dir() return subprocess.check_output(f'git -C {path} describe --tags --long --always', shell=True).decode()[:-1] diff --git a/ultralytics/yolo/utils/files.py b/ultralytics/yolo/utils/files.py index 2a13c4e..6359947 100644 --- a/ultralytics/yolo/utils/files.py +++ b/ultralytics/yolo/utils/files.py @@ -91,7 +91,7 @@ def get_latest_run(search_dir='.'): def make_dirs(dir='new_dir/'): - # Create folders + """Create directories.""" dir = Path(dir) if dir.exists(): shutil.rmtree(dir) # delete dir diff --git a/ultralytics/yolo/utils/ops.py b/ultralytics/yolo/utils/ops.py index 9135117..b9199ad 100644 --- a/ultralytics/yolo/utils/ops.py +++ b/ultralytics/yolo/utils/ops.py @@ -55,12 +55,17 @@ class Profile(contextlib.ContextDecorator): return time.time() -def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper) - # https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/ - # a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n') - # b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n') - # x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco - # x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet +def coco80_to_coco91_class(): # + """ + Converts 80-index (val2014) to 91-index (paper). + For details see https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/. + + Example: + a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n') + b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n') + x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco + x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet + """ return [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, diff --git a/ultralytics/yolo/utils/patches.py b/ultralytics/yolo/utils/patches.py index 2b023b9..4cbebd0 100644 --- a/ultralytics/yolo/utils/patches.py +++ b/ultralytics/yolo/utils/patches.py @@ -34,7 +34,7 @@ _torch_save = torch.save # copy to avoid recursion errors def torch_save(*args, **kwargs): - # Use dill (if exists) to serialize the lambda functions where pickle does not do this + """Use dill (if exists) to serialize the lambda functions where pickle does not do this.""" try: import dill as pickle except ImportError: diff --git a/ultralytics/yolo/utils/plotting.py b/ultralytics/yolo/utils/plotting.py index 8932062..0236a79 100644 --- a/ultralytics/yolo/utils/plotting.py +++ b/ultralytics/yolo/utils/plotting.py @@ -21,7 +21,8 @@ from .ops import clip_boxes, scale_image, xywh2xyxy, xyxy2xywh class Colors: - # Ultralytics color palette https://ultralytics.com/ + """Ultralytics color palette https://ultralytics.com/.""" + def __init__(self): """Initialize colors as hex = matplotlib.colors.TABLEAU_COLORS.values().""" hexs = ('FF3838', 'FF9D97', 'FF701F', 'FFB21D', 'CFD231', '48F90A', '92CC17', '3DDB86', '1A9334', '00D4BB', @@ -48,7 +49,8 @@ colors = Colors() # create instance for 'from utils.plots import colors' class Annotator: - # YOLOv8 Annotator for train/val mosaics and jpgs and detect/hub inference annotations + """YOLOv8 Annotator for train/val mosaics and jpgs and detect/hub inference annotations.""" + def __init__(self, im, line_width=None, font_size=None, font='Arial.ttf', pil=False, example='abc'): """Initialize the Annotator class with image and line width along with color palette for keypoints and limbs.""" assert im.data.contiguous, 'Image not contiguous. Apply np.ascontiguousarray(im) to Annotator() input images.' @@ -204,7 +206,14 @@ class Annotator: self.draw.rectangle((xy[0], xy[1], xy[0] + w + 1, xy[1] + h + 1), fill=txt_color) # Using `txt_color` for background and draw fg with white color txt_color = (255, 255, 255) - self.draw.text(xy, text, fill=txt_color, font=self.font) + if '\n' in text: + lines = text.split('\n') + _, h = self.font.getsize(text) + for line in lines: + self.draw.text(xy, line, fill=txt_color, font=self.font) + xy[1] += h + else: + self.draw.text(xy, text, fill=txt_color, font=self.font) else: if box_style: tf = max(self.lw - 1, 1) # font thickness @@ -310,7 +319,7 @@ def plot_images(images, fname='images.jpg', names=None, on_plot=None): - # Plot image grid with labels + """Plot image grid with labels.""" if isinstance(images, torch.Tensor): images = images.cpu().float().numpy() if isinstance(cls, torch.Tensor): diff --git a/ultralytics/yolo/utils/torch_utils.py b/ultralytics/yolo/utils/torch_utils.py index e5a62dc..245f157 100644 --- a/ultralytics/yolo/utils/torch_utils.py +++ b/ultralytics/yolo/utils/torch_utils.py @@ -232,7 +232,7 @@ def get_flops(model, imgsz=640): def get_flops_with_torch_profiler(model, imgsz=640): - # Compute model FLOPs (thop alternative) + """Compute model FLOPs (thop alternative).""" model = de_parallel(model) p = next(model.parameters()) stride = (max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32) * 2 # max stride