From 8028e2b1b8a4246a2f5dc279a68c42b4cbd131a7 Mon Sep 17 00:00:00 2001 From: Ayush Chaurasia Date: Tue, 27 Dec 2022 21:32:03 +0530 Subject: [PATCH] Make optimizer static method inside trainer (#103) Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher --- ultralytics/yolo/engine/trainer.py | 66 +++++++++++++++--------------- 1 file changed, 32 insertions(+), 34 deletions(-) diff --git a/ultralytics/yolo/engine/trainer.py b/ultralytics/yolo/engine/trainer.py index f3932d3..6757f3f 100644 --- a/ultralytics/yolo/engine/trainer.py +++ b/ultralytics/yolo/engine/trainer.py @@ -142,11 +142,11 @@ class BaseTrainer: # Optimizer self.accumulate = max(round(self.args.nbs / self.batch_size), 1) # accumulate loss before optimizing self.args.weight_decay *= self.batch_size * self.accumulate / self.args.nbs # scale weight_decay - self.optimizer = build_optimizer(model=self.model, - name=self.args.optimizer, - lr=self.args.lr0, - momentum=self.args.momentum, - decay=self.args.weight_decay) + self.optimizer = self.build_optimizer(model=self.model, + name=self.args.optimizer, + lr=self.args.lr0, + momentum=self.args.momentum, + decay=self.args.weight_decay) # Scheduler if self.args.cos_lr: self.lf = one_cycle(1, self.args.lrf, self.epochs) # cosine 1->hyp['lrf'] @@ -459,33 +459,31 @@ class BaseTrainer: self.best_fitness = best_fitness self.start_epoch = start_epoch + @staticmethod + def build_optimizer(model, name='Adam', lr=0.001, momentum=0.9, decay=1e-5): + g = [], [], [] # optimizer parameter groups + bn = tuple(v for k, v in nn.__dict__.items() if 'Norm' in k) # normalization layers, i.e. BatchNorm2d() + for v in model.modules(): + if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter): # bias (no decay) + g[2].append(v.bias) + if isinstance(v, bn): # weight (no decay) + g[1].append(v.weight) + elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter): # weight (with decay) + g[0].append(v.weight) + + if name == 'Adam': + optimizer = torch.optim.Adam(g[2], lr=lr, betas=(momentum, 0.999)) # adjust beta1 to momentum + elif name == 'AdamW': + optimizer = torch.optim.AdamW(g[2], lr=lr, betas=(momentum, 0.999), weight_decay=0.0) + elif name == 'RMSProp': + optimizer = torch.optim.RMSprop(g[2], lr=lr, momentum=momentum) + elif name == 'SGD': + optimizer = torch.optim.SGD(g[2], lr=lr, momentum=momentum, nesterov=True) + else: + raise NotImplementedError(f'Optimizer {name} not implemented.') -def build_optimizer(model, name='Adam', lr=0.001, momentum=0.9, decay=1e-5): - # TODO: 1. docstring with example? 2. Move this inside Trainer? or utils? - # YOLOv5 3-param group optimizer: 0) weights with decay, 1) weights no decay, 2) biases no decay - g = [], [], [] # optimizer parameter groups - bn = tuple(v for k, v in nn.__dict__.items() if 'Norm' in k) # normalization layers, i.e. BatchNorm2d() - for v in model.modules(): - if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter): # bias (no decay) - g[2].append(v.bias) - if isinstance(v, bn): # weight (no decay) - g[1].append(v.weight) - elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter): # weight (with decay) - g[0].append(v.weight) - - if name == 'Adam': - optimizer = torch.optim.Adam(g[2], lr=lr, betas=(momentum, 0.999)) # adjust beta1 to momentum - elif name == 'AdamW': - optimizer = torch.optim.AdamW(g[2], lr=lr, betas=(momentum, 0.999), weight_decay=0.0) - elif name == 'RMSProp': - optimizer = torch.optim.RMSprop(g[2], lr=lr, momentum=momentum) - elif name == 'SGD': - optimizer = torch.optim.SGD(g[2], lr=lr, momentum=momentum, nesterov=True) - else: - raise NotImplementedError(f'Optimizer {name} not implemented.') - - optimizer.add_param_group({'params': g[0], 'weight_decay': decay}) # add g0 with weight_decay - optimizer.add_param_group({'params': g[1], 'weight_decay': 0.0}) # add g1 (BatchNorm2d weights) - LOGGER.info(f"{colorstr('optimizer:')} {type(optimizer).__name__}(lr={lr}) with parameter groups " - f"{len(g[1])} weight(decay=0.0), {len(g[0])} weight(decay={decay}), {len(g[2])} bias") - return optimizer + optimizer.add_param_group({'params': g[0], 'weight_decay': decay}) # add g0 with weight_decay + optimizer.add_param_group({'params': g[1], 'weight_decay': 0.0}) # add g1 (BatchNorm2d weights) + LOGGER.info(f"{colorstr('optimizer:')} {type(optimizer).__name__}(lr={lr}) with parameter groups " + f"{len(g[1])} weight(decay=0.0), {len(g[0])} weight(decay={decay}), {len(g[2])} bias") + return optimizer