diff --git a/docs/cfg.md b/docs/cfg.md index c1bdab7..5c29fad 100644 --- a/docs/cfg.md +++ b/docs/cfg.md @@ -2,40 +2,51 @@ YOLO settings and hyperparameters play a critical role in the model's performanc and hyperparameters can affect the model's behavior at various stages of the model development process, including training, validation, and prediction. -Properly setting and tuning these parameters can have a significant impact on the model's ability to learn effectively -from the training data and generalize to new data. For example, choosing an appropriate learning rate, batch size, and -optimization algorithm can greatly affect the model's convergence speed and accuracy. Similarly, setting the correct -confidence threshold and non-maximum suppression (NMS) threshold can affect the model's performance on detection tasks. +YOLOv8 'yolo' CLI commands use the following syntax: -It is important to carefully consider and experiment with these settings and hyperparameters to achieve the best -possible performance for a given task. This can involve trial and error, as well as using techniques such as -hyperparameter optimization to search for the optimal set of parameters. +!!! example "" -In summary, YOLO settings and hyperparameters are a key factor in the success of a YOLO model, and it is important to -pay careful attention to them to achieve the desired results. + === "CLI" + + ```bash + yolo TASK MODE ARGS + ``` -### Setting the operation type +Where: + +- `TASK` (optional) is one of `[detect, segment, classify]`. If it is not passed explicitly YOLOv8 will try to guess + the `TASK` from the model type. +- `MODE` (required) is one of `[train, val, predict, export]` +- `ARGS` (optional) are any number of custom `arg=value` pairs like `imgsz=320` that override defaults. + For a full list of available `ARGS` see the [Configuration](cfg.md) page and `defaults.yaml` + GitHub [source](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/yolo/cfg/default.yaml). + +#### Tasks YOLO models can be used for a variety of tasks, including detection, segmentation, and classification. These tasks differ in the type of output they produce and the specific problem they are designed to solve. -- Detection: Detection tasks involve identifying and localizing objects or regions of interest in an image or video. +- **Detect**: Detection tasks involve identifying and localizing objects or regions of interest in an image or video. YOLO models can be used for object detection tasks by predicting the bounding boxes and class labels of objects in an image. -- Segmentation: Segmentation tasks involve dividing an image or video into regions or pixels that correspond to +- **Segment**: Segmentation tasks involve dividing an image or video into regions or pixels that correspond to different objects or classes. YOLO models can be used for image segmentation tasks by predicting a mask or label for each pixel in an image. -- Classification: Classification tasks involve assigning a class label to an input, such as an image or text. YOLO +- **Classify**: Classification tasks involve assigning a class label to an input, such as an image or text. YOLO models can be used for image classification tasks by predicting the class label of an input image. +#### Modes + YOLO models can be used in different modes depending on the specific problem you are trying to solve. These modes include train, val, and predict. -- Train: The train mode is used to train the model on a dataset. This mode is typically used during the development and +- **Train**: The train mode is used to train the model on a dataset. This mode is typically used during the development + and testing phase of a model. -- Val: The val mode is used to evaluate the model's performance on a validation dataset. This mode is typically used to +- **Val**: The val mode is used to evaluate the model's performance on a validation dataset. This mode is typically used + to tune the model's hyperparameters and detect overfitting. -- Predict: The predict mode is used to make predictions with the model on new data. This mode is typically used in +- **Predict**: The predict mode is used to make predictions with the model on new data. This mode is typically used in production or when deploying the model to users. | Key | Value | Description | diff --git a/docs/cli.md b/docs/cli.md index 976001f..091eb1a 100644 --- a/docs/cli.md +++ b/docs/cli.md @@ -16,8 +16,9 @@ Where: - `TASK` (optional) is one of `[detect, segment, classify]`. If it is not passed explicitly YOLOv8 will try to guess the `TASK` from the model type. - `MODE` (required) is one of `[train, val, predict, export]` -- `ARGS` (optional) are any number of custom `arg=value` pairs like `imgsz=320` that override defaults. - For a full list of available `ARGS` see the [Configuration](cfg.md) page. +- `ARGS` (optional) are any number of custom `arg=value` pairs like `imgsz=320` that override defaults. + For a full list of available `ARGS` see the [Configuration](cfg.md) page and `defaults.yaml` + GitHub [source](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/yolo/cfg/default.yaml). !!! note "" diff --git a/docs/predict.md b/docs/predict.md index 8716520..67606d7 100644 --- a/docs/predict.md +++ b/docs/predict.md @@ -1,74 +1,94 @@ -Inference or prediction of a task returns a list of `Results` objects. Alternatively, in the streaming mode, it returns a generator of `Results` objects which is memory efficient. Streaming mode can be enabled by passing `stream=True` in predictor's call method. +Inference or prediction of a task returns a list of `Results` objects. Alternatively, in the streaming mode, it returns +a generator of `Results` objects which is memory efficient. Streaming mode can be enabled by passing `stream=True` in +predictor's call method. !!! example "Predict" + === "Getting a List" - ```python - inputs = [img, img] # list of np arrays - results = model(inputs) # List of Results objects - for result in results: - boxes = result.boxes # Boxes object for bbox outputs - masks = result.masks # Masks object for segmenation masks outputs - probs = result.probs # Class probabilities for classification outputs - ... - ``` + + ```python + inputs = [img, img] # list of np arrays + results = model(inputs) # List of Results objects + + for result in results: + boxes = result.boxes # Boxes object for bbox outputs + masks = result.masks # Masks object for segmenation masks outputs + probs = result.probs # Class probabilities for classification outputs + ``` + === "Getting a Generator" - ```python - inputs = [img, img] # list of np arrays - results = model(inputs, stream=True) # Generator of Results objects - for result in results: - boxes = result.boxes # Boxes object for bbox outputs - masks = result.masks # Masks object for segmenation masks outputs - probs = result.probs # Class probabilities for classification outputs - ... - ``` + + ```python + inputs = [img, img] # list of numpy arrays + results = model(inputs, stream=True) # generator of Results objects + + for r in results: + boxes = r.boxes # Boxes object for bbox outputs + masks = r.masks # Masks object for segmenation masks outputs + probs = r.probs # Class probabilities for classification outputs + ``` ## Working with Results Results object consists of these component objects: -- `results.boxes` : It is an object of class `Boxes`. It has properties and methods for manipulating bboxes -- `results.masks` : It is an object of class `Masks`. It can be used to index masks or to get segment coordinates. -- `results.prob` : It is a `Tensor` object. It contains the class probabilities/logits. +- `Results.boxes` : `Boxes` object with properties and methods for manipulating bboxes +- `Results.masks` : `Masks` object used to index masks or to get segment coordinates. +- `Results.prob` : `torch.Tensor` containing the class probabilities/logits. Each result is composed of torch.Tensor by default, in which you can easily use following functionality: + ```python results = results.cuda() results = results.cpu() results = results.to("cpu") results = results.numpy() ``` + ### Boxes -`Boxes` object can be used index, manipulate and convert bboxes to different formats. The box format conversion operations are cached, which means they're only calculated once per object and those values are reused for future calls. + +`Boxes` object can be used index, manipulate and convert bboxes to different formats. The box format conversion +operations are cached, which means they're only calculated once per object and those values are reused for future calls. - Indexing a `Boxes` objects returns a `Boxes` object + ```python -boxes = results.boxes -box = boxes[0] # returns one box +results = model(inputs) +boxes = results[0].boxes +box = boxes[0] # returns one box box.xyxy ``` + - Properties and conversions -``` -boxes.xyxy # box with xyxy format, (N, 4) -boxes.xywh # box with xywh format, (N, 4) + +```python +boxes.xyxy # box with xyxy format, (N, 4) +boxes.xywh # box with xywh format, (N, 4) boxes.xyxyn # box with xyxy format but normalized, (N, 4) boxes.xywhn # box with xywh format but normalized, (N, 4) -boxes.conf # confidence score, (N, 1) -boxes.cls # cls, (N, 1) -boxes.data # raw bboxes tensor, (N, 6) or boxes.boxes . +boxes.conf # confidence score, (N, 1) +boxes.cls # cls, (N, 1) +boxes.data # raw bboxes tensor, (N, 6) or boxes.boxes . ``` + ### Masks + `Masks` object can be used index, manipulate and convert masks to segments. The segment conversion operation is cached. ```python -masks = results.masks # Masks object +results = model(inputs) +masks = results[0].masks # Masks object masks.segments # bounding coordinates of masks, List[segment] * N -masks.data # raw masks tensor, (N, H, W) or masks.masks +masks.data # raw masks tensor, (N, H, W) or masks.masks ``` ### probs + `probs` attribute of `Results` class is a `Tensor` containing class probabilities of a classification operation. + ```python -results.probs # cls prob, (num_class, ) +results = model(inputs) +results[0].probs # cls prob, (num_class, ) ``` Class reference documentation for `Results` module and its components can be found [here](reference/results.md) diff --git a/mkdocs.yml b/mkdocs.yml index 0652d4b..e1e0858 100644 --- a/mkdocs.yml +++ b/mkdocs.yml @@ -90,8 +90,8 @@ nav: - Ultralytics HUB: hub.md - iOS and Android App: app.md - Reference: - - Python Model interface: reference/model.md - Engine: + - Model: reference/model.md - Trainer: reference/base_trainer.md - Validator: reference/base_val.md - Predictor: reference/base_pred.md diff --git a/ultralytics/hub/session.py b/ultralytics/hub/session.py index b441beb..27418c4 100644 --- a/ultralytics/hub/session.py +++ b/ultralytics/hub/session.py @@ -1,5 +1,5 @@ # Ultralytics YOLO 🚀, GPL-3.0 license - +import signal from pathlib import Path from time import sleep @@ -13,22 +13,6 @@ AGENT_NAME = f'python-{__version__}-colab' if is_colab() else f'python-{__versio session = None -# Causing problems in tests (non-authenticated) -# import signal -# import sys -# def signal_handler(signum, frame): -# """ Confirm exit """ -# global hub_logger -# LOGGER.info(f'Signal received. {signum} {frame}') -# if isinstance(session, HubTrainingSession): -# hub_logger.alive = False -# del hub_logger -# sys.exit(signum) -# -# -# signal.signal(signal.SIGTERM, signal_handler) -# signal.signal(signal.SIGINT, signal_handler) - class HubTrainingSession: @@ -43,10 +27,11 @@ class HubTrainingSession: self.alive = True # for heartbeats self.model = self._get_model() self._heartbeats() # start heartbeats + signal.signal(signal.SIGTERM, self.shutdown) # register the shutdown function to be called on exit + signal.signal(signal.SIGINT, self.shutdown) - def __del__(self): - # Class destructor - self.alive = False + def shutdown(self, *args): # noqa + self.alive = False # stop heartbeats def upload_metrics(self): payload = {"metrics": self.metrics_queue.copy(), "type": "metrics"} @@ -100,13 +85,6 @@ class HubTrainingSession: if not check_dataset_disk_space(self.model['data']): raise MemoryError("Not enough disk space") - # COMMENT: Should not be needed as HUB is now considered an integration and is in integrations_callbacks - # import ultralytics.yolo.utils.callbacks.hub as hub_callbacks - # @staticmethod - # def register_callbacks(trainer): - # for k, v in hub_callbacks.callbacks.items(): - # trainer.add_callback(k, v) - @threaded def _heartbeats(self): while self.alive: diff --git a/ultralytics/hub/utils.py b/ultralytics/hub/utils.py index fadb615..54fdfed 100644 --- a/ultralytics/hub/utils.py +++ b/ultralytics/hub/utils.py @@ -4,6 +4,7 @@ import os import shutil import threading import time +from random import random import requests @@ -14,7 +15,7 @@ HELP_MSG = 'If this issue persists please visit https://github.com/ultralytics/h HUB_API_ROOT = os.environ.get("ULTRALYTICS_HUB_API", "https://api.ultralytics.com") -def check_dataset_disk_space(url='https://github.com/ultralytics/yolov5/releases/download/v1.0/coco128.zip', sf=2.0): +def check_dataset_disk_space(url='https://ultralytics.com/assets/coco128.zip', sf=2.0): # Check that url fits on disk with safety factor sf, i.e. require 2GB free if url size is 1GB with sf=2.0 gib = 1 << 30 # bytes per GiB data = int(requests.head(url).headers['Content-Length']) / gib # dataset size (GB) @@ -130,18 +131,18 @@ def smart_request(*args, retry=3, timeout=30, thread=True, code=-1, method="post return func(*args, **kwargs) -@TryExcept() -def sync_analytics(cfg, all_keys=False, enabled=False): +@TryExcept(verbose=False) +def traces(cfg, all_keys=False, traces_sample_rate=0.0): """ - Sync analytics data if enabled in the global settings + Sync traces data if enabled in the global settings Args: - cfg (UltralyticsCFG): Configuration for the task and mode. + cfg (IterableSimpleNamespace): Configuration for the task and mode. all_keys (bool): Sync all items, not just non-default values. - enabled (bool): For debugging. + traces_sample_rate (float): Fraction of traces captured from 0.0 to 1.0 """ - if SETTINGS['sync'] and RANK in {-1, 0} and enabled: - cfg = dict(cfg) # convert type from UltralyticsCFG to dict + if SETTINGS['sync'] and RANK in {-1, 0} and (random() < traces_sample_rate): + cfg = vars(cfg) # convert type from IterableSimpleNamespace to dict if not all_keys: cfg = {k: v for k, v in cfg.items() if v != DEFAULT_CFG_DICT.get(k, None)} # retain non-default values cfg['uuid'] = SETTINGS['uuid'] # add the device UUID to the configuration data diff --git a/ultralytics/yolo/cfg/__init__.py b/ultralytics/yolo/cfg/__init__.py index b6ab510..092406b 100644 --- a/ultralytics/yolo/cfg/__init__.py +++ b/ultralytics/yolo/cfg/__init__.py @@ -1,5 +1,4 @@ # Ultralytics YOLO 🚀, GPL-3.0 license -import argparse import re import shutil import sys @@ -9,46 +8,39 @@ from types import SimpleNamespace from typing import Dict, Union from ultralytics import __version__, yolo -from ultralytics.yolo.utils import DEFAULT_CFG_PATH, LOGGER, PREFIX, checks, colorstr, print_settings, yaml_load - -DIR = Path(__file__).parent +from ultralytics.yolo.utils import (DEFAULT_CFG_DICT, DEFAULT_CFG_PATH, LOGGER, PREFIX, USER_CONFIG_DIR, + IterableSimpleNamespace, checks, colorstr, yaml_load, yaml_print) CLI_HELP_MSG = \ """ - YOLOv8 CLI Usage examples: - - 1. Install the ultralytics package: - - pip install ultralytics - - 2. Train, Val, Predict and Export using 'yolo' commands: + YOLOv8 'yolo' CLI commands use the following syntax: - yolo TASK MODE ARGS + yolo TASK MODE ARGS - Where TASK (optional) is one of [detect, segment, classify] - MODE (required) is one of [train, val, predict, export] - ARGS (optional) are any number of custom 'arg=value' pairs like 'imgsz=320' that override defaults. - For a full list of available ARGS see https://docs.ultralytics.com/cfg. + Where TASK (optional) is one of [detect, segment, classify] + MODE (required) is one of [train, val, predict, export] + ARGS (optional) are any number of custom 'arg=value' pairs like 'imgsz=320' that override defaults. + See all ARGS at https://docs.ultralytics.com/cfg or with 'yolo cfg' - Train a detection model for 10 epochs with an initial learning_rate of 0.01 - yolo detect train data=coco128.yaml model=yolov8n.pt epochs=10 lr0=0.01 + 1. Train a detection model for 10 epochs with an initial learning_rate of 0.01 + yolo detect train data=coco128.yaml model=yolov8n.pt epochs=10 lr0=0.01 - Predict a YouTube video using a pretrained segmentation model at image size 320: - yolo segment predict model=yolov8n-seg.pt source=https://youtu.be/Zgi9g1ksQHc imgsz=320 + 2. Predict a YouTube video using a pretrained segmentation model at image size 320: + yolo segment predict model=yolov8n-seg.pt source=https://youtu.be/Zgi9g1ksQHc imgsz=320 - Validate a pretrained detection model at batch-size 1 and image size 640: - yolo detect val model=yolov8n.pt data=coco128.yaml batch=1 imgsz=640 + 3. Val a pretrained detection model at batch-size 1 and image size 640: + yolo detect val model=yolov8n.pt data=coco128.yaml batch=1 imgsz=640 - Export a YOLOv8n classification model to ONNX format at image size 224 by 128 (no TASK required) - yolo export model=yolov8n-cls.pt format=onnx imgsz=224,128 - - 3. Run special commands: + 4. Export a YOLOv8n classification model to ONNX format at image size 224 by 128 (no TASK required) + yolo export model=yolov8n-cls.pt format=onnx imgsz=224,128 + 5. Run special commands: yolo help yolo checks yolo version yolo settings yolo copy-cfg + yolo cfg Docs: https://docs.ultralytics.com/cli Community: https://community.ultralytics.com @@ -56,15 +48,6 @@ CLI_HELP_MSG = \ """ -class UltralyticsCFG(SimpleNamespace): - """ - UltralyticsCFG iterable SimpleNamespace class to allow SimpleNamespace to be used with dict() and in for loops - """ - - def __iter__(self): - return iter(vars(self).items()) - - def cfg2dict(cfg): """ Convert a configuration object to a dictionary. @@ -104,7 +87,7 @@ def get_cfg(cfg: Union[str, Path, Dict, SimpleNamespace], overrides: Dict = None cfg = {**cfg, **overrides} # merge cfg and overrides dicts (prefer overrides) # Return instance - return UltralyticsCFG(**cfg) + return IterableSimpleNamespace(**cfg) def check_cfg_mismatch(base: Dict, custom: Dict): @@ -118,12 +101,19 @@ def check_cfg_mismatch(base: Dict, custom: Dict): """ base, custom = (set(x.keys()) for x in (base, custom)) mismatched = [x for x in custom if x not in base] - for option in mismatched: - LOGGER.info(f"{colorstr(option)} is not a valid key. Similar keys: {get_close_matches(option, base, 3, 0.6)}") if mismatched: + for x in mismatched: + matches = get_close_matches(x, base, 3, 0.6) + match_str = f"Similar arguments are {matches}." if matches else 'There are no similar arguments.' + LOGGER.warning(f"'{colorstr('red', 'bold', x)}' is not a valid YOLO argument. {match_str}") + LOGGER.warning(CLI_HELP_MSG) sys.exit() +def argument_error(arg): + return SyntaxError(f"'{arg}' is not a valid YOLO argument.\n{CLI_HELP_MSG}") + + def entrypoint(debug=False): """ This function is the ultralytics package entrypoint, it's responsible for parsing the command line arguments passed @@ -139,67 +129,61 @@ def entrypoint(debug=False): It uses the package's default cfg and initializes it using the passed overrides. Then it calls the CLI function with the composed cfg """ - if debug: - args = ['train', 'predict', 'model=yolov8n.pt'] # for testing - else: - if len(sys.argv) == 1: # no arguments passed - LOGGER.info(CLI_HELP_MSG) - return - - parser = argparse.ArgumentParser(description='YOLO parser') - parser.add_argument('args', type=str, nargs='+', help='YOLO args') - args = parser.parse_args().args - args = re.sub(r'\s*=\s*', '=', ' '.join(args)).split(' ') # remove whitespaces around = sign + args = ['train', 'predict', 'model=yolov8n.pt'] if debug else sys.argv[1:] + if not args: # no arguments passed + LOGGER.info(CLI_HELP_MSG) + return tasks = 'detect', 'segment', 'classify' modes = 'train', 'val', 'predict', 'export' - special_modes = { + special = { 'help': lambda: LOGGER.info(CLI_HELP_MSG), 'checks': checks.check_yolo, 'version': lambda: LOGGER.info(__version__), - 'settings': print_settings, + 'settings': lambda: yaml_print(USER_CONFIG_DIR / 'settings.yaml'), + 'cfg': lambda: yaml_print(DEFAULT_CFG_PATH), 'copy-cfg': copy_default_config} overrides = {} # basic overrides, i.e. imgsz=320 - defaults = yaml_load(DEFAULT_CFG_PATH) for a in args: if '=' in a: - if a.startswith('cfg='): # custom.yaml passed - custom_config = Path(a.split('=')[-1]) - LOGGER.info(f"{PREFIX}Overriding {DEFAULT_CFG_PATH} with {custom_config}") - overrides = {k: v for k, v in yaml_load(custom_config).items() if k not in {'cfg'}} - else: + try: + re.sub(r' *= *', '=', a) # remove spaces around equals sign k, v = a.split('=') - try: - if k == 'device': # special DDP handling, i.e. device='0,1,2,3' - v = v.replace('[', '').replace(']', '') # handle device=[0,1,2,3] - v = v.replace(" ", "") # handle device=[0, 1, 2, 3] - v = v.replace('\\', '') # handle device=\'0,1,2,3\' - overrides[k] = v - else: - overrides[k] = eval(v) # convert strings to integers, floats, bools, etc. - except (NameError, SyntaxError): + if k == 'cfg': # custom.yaml passed + LOGGER.info(f"{PREFIX}Overriding {DEFAULT_CFG_PATH} with {v}") + overrides = {k: val for k, val in yaml_load(v).items() if k != 'cfg'} + else: + if v.isnumeric(): + v = eval(v) + elif v.lower() == 'none': + v = None + elif v.lower() == 'true': + v = True + elif v.lower() == 'false': + v = False + elif ',' in v: + v = eval(v) overrides[k] = v + except (NameError, SyntaxError, ValueError) as e: + raise argument_error(a) from e + elif a in tasks: overrides['task'] = a elif a in modes: overrides['mode'] = a - elif a in special_modes: - special_modes[a]() + elif a in special: + special[a]() return - elif a in defaults and defaults[a] is False: + elif a in DEFAULT_CFG_DICT and DEFAULT_CFG_DICT[a] is False: overrides[a] = True # auto-True for default False args, i.e. 'yolo show' sets show=True - elif a in defaults: - raise SyntaxError(f"'{a}' is a valid YOLO argument but is missing an '=' sign to set its value, " - f"i.e. try '{a}={defaults[a]}'" - f"\n{CLI_HELP_MSG}") + elif a in DEFAULT_CFG_DICT: + raise SyntaxError(f"'{colorstr('red', 'bold', a)}' is a valid YOLO argument but is missing an '=' sign " + f"to set its value, i.e. try '{a}={DEFAULT_CFG_DICT[a]}'\n{CLI_HELP_MSG}") else: - raise SyntaxError( - f"'{a}' is not a valid YOLO argument. For a full list of valid arguments see " - f"https://github.com/ultralytics/ultralytics/blob/main/ultralytics/yolo/configs/default.yaml" - f"\n{CLI_HELP_MSG}") + raise argument_error(a) - cfg = get_cfg(defaults, overrides) # create CFG instance + cfg = get_cfg(DEFAULT_CFG_DICT, overrides) # create CFG instance # Mapping from task to module module = {"detect": yolo.v8.detect, "segment": yolo.v8.segment, "classify": yolo.v8.classify}.get(cfg.task) @@ -223,8 +207,8 @@ def copy_default_config(): new_file = Path.cwd() / DEFAULT_CFG_PATH.name.replace('.yaml', '_copy.yaml') shutil.copy2(DEFAULT_CFG_PATH, new_file) LOGGER.info(f"{PREFIX}{DEFAULT_CFG_PATH} copied to {new_file}\n" - f"Usage for running YOLO with this new custom cfg:\nyolo cfg={new_file} args...") + f"Example YOLO command with this new custom cfg:\n yolo cfg='{new_file}' imgsz=320 batch=8") if __name__ == '__main__': - entrypoint() + entrypoint(debug=True) diff --git a/ultralytics/yolo/data/base.py b/ultralytics/yolo/data/base.py index d702b1b..50c13a9 100644 --- a/ultralytics/yolo/data/base.py +++ b/ultralytics/yolo/data/base.py @@ -93,7 +93,7 @@ class BaseDataset(Dataset): # self.img_files = sorted([x for x in f if x.suffix[1:].lower() in IMG_FORMATS]) # pathlib assert im_files, f"{self.prefix}No images found" except Exception as e: - raise FileNotFoundError(f"{self.prefix}Error loading data from {img_path}: {e}\n{HELP_URL}") from e + raise FileNotFoundError(f"{self.prefix}Error loading data from {img_path}\n{HELP_URL}") from e return im_files def update_labels(self, include_class: Optional[list]): @@ -134,16 +134,17 @@ class BaseDataset(Dataset): gb = 0 # Gigabytes of cached images self.im_hw0, self.im_hw = [None] * self.ni, [None] * self.ni fcn = self.cache_images_to_disk if cache == "disk" else self.load_image - results = ThreadPool(NUM_THREADS).imap(fcn, range(self.ni)) - pbar = tqdm(enumerate(results), total=self.ni, bar_format=TQDM_BAR_FORMAT, disable=LOCAL_RANK > 0) - for i, x in pbar: - if cache == "disk": - gb += self.npy_files[i].stat().st_size - else: # 'ram' - self.ims[i], self.im_hw0[i], self.im_hw[i] = x # im, hw_orig, hw_resized = load_image(self, i) - gb += self.ims[i].nbytes - pbar.desc = f"{self.prefix}Caching images ({gb / 1E9:.1f}GB {cache})" - pbar.close() + with ThreadPool(NUM_THREADS) as pool: + results = pool.imap(fcn, range(self.ni)) + pbar = tqdm(enumerate(results), total=self.ni, bar_format=TQDM_BAR_FORMAT, disable=LOCAL_RANK > 0) + for i, x in pbar: + if cache == "disk": + gb += self.npy_files[i].stat().st_size + else: # 'ram' + self.ims[i], self.im_hw0[i], self.im_hw[i] = x # im, hw_orig, hw_resized = load_image(self, i) + gb += self.ims[i].nbytes + pbar.desc = f"{self.prefix}Caching images ({gb / 1E9:.1f}GB {cache})" + pbar.close() def cache_images_to_disk(self, i): # Saves an image as an *.npy file for faster loading diff --git a/ultralytics/yolo/data/dataloaders/v5loader.py b/ultralytics/yolo/data/dataloaders/v5loader.py index cf4feee..96fb8c2 100644 --- a/ultralytics/yolo/data/dataloaders/v5loader.py +++ b/ultralytics/yolo/data/dataloaders/v5loader.py @@ -13,7 +13,7 @@ import random import shutil import time from itertools import repeat -from multiprocessing.pool import Pool, ThreadPool +from multiprocessing.pool import ThreadPool from pathlib import Path from threading import Thread from urllib.parse import urlparse @@ -580,7 +580,7 @@ class LoadImagesAndLabels(Dataset): b, gb = 0, 1 << 30 # bytes of cached images, bytes per gigabytes self.im_hw0, self.im_hw = [None] * n, [None] * n fcn = self.cache_images_to_disk if cache_images == 'disk' else self.load_image - with (Pool if n > 10000 else ThreadPool)(NUM_THREADS) as pool: + with ThreadPool(NUM_THREADS) as pool: results = pool.imap(fcn, range(n)) pbar = tqdm(enumerate(results), total=n, bar_format=TQDM_BAR_FORMAT, disable=LOCAL_RANK > 0) for i, x in pbar: @@ -1150,7 +1150,7 @@ class HUBDatasetStats(): dataset = LoadImagesAndLabels(self.data[split]) # load dataset desc = f'{split} images' total = dataset.n - with (Pool if total > 10000 else ThreadPool)(NUM_THREADS) as pool: + with ThreadPool(NUM_THREADS) as pool: for _ in tqdm(pool.imap(self._hub_ops, dataset.im_files), total=total, desc=desc): pass print(f'Done. All images saved to {self.im_dir}') diff --git a/ultralytics/yolo/data/utils.py b/ultralytics/yolo/data/utils.py index c5cf4ac..e469402 100644 --- a/ultralytics/yolo/data/utils.py +++ b/ultralytics/yolo/data/utils.py @@ -185,9 +185,9 @@ def polygons2masks_overlap(imgsz, segments, downsample_ratio=1): return masks, index -def check_dataset_yaml(data, autodownload=True): +def check_dataset_yaml(dataset, autodownload=True): # Download, check and/or unzip dataset if not found locally - data = check_file(data) + data = check_file(dataset) # Download (optional) extract_dir = '' @@ -227,9 +227,11 @@ def check_dataset_yaml(data, autodownload=True): if val: val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])] # val path if not all(x.exists() for x in val): - LOGGER.info('\nDataset not found ⚠️, missing paths %s' % [str(x) for x in val if not x.exists()]) - if not s or not autodownload: - raise FileNotFoundError('Dataset not found ❌') + msg = f"\nDataset '{dataset}' not found ⚠️, missing paths %s" % [str(x) for x in val if not x.exists()] + if s and autodownload: + LOGGER.warning(msg) + else: + raise FileNotFoundError(s) t = time.time() if s.startswith('http') and s.endswith('.zip'): # URL f = Path(s).name # filename diff --git a/ultralytics/yolo/engine/exporter.py b/ultralytics/yolo/engine/exporter.py index 7c1cfac..cc5e63b 100644 --- a/ultralytics/yolo/engine/exporter.py +++ b/ultralytics/yolo/engine/exporter.py @@ -126,15 +126,15 @@ class Exporter: save_dir (Path): Directory to save results. """ - def __init__(self, config=DEFAULT_CFG, overrides=None): + def __init__(self, cfg=DEFAULT_CFG, overrides=None): """ Initializes the Exporter class. Args: - config (str, optional): Path to a configuration file. Defaults to DEFAULT_CONFIG. + cfg (str, optional): Path to a configuration file. Defaults to DEFAULT_CONFIG. overrides (dict, optional): Configuration overrides. Defaults to None. """ - self.args = get_cfg(config, overrides) + self.args = get_cfg(cfg, overrides) self.callbacks = defaultdict(list, {k: [v] for k, v in callbacks.default_callbacks.items()}) # add callbacks callbacks.add_integration_callbacks(self) @@ -151,7 +151,7 @@ class Exporter: # Load PyTorch model self.device = select_device('cpu' if self.args.device is None else self.args.device) if self.args.half: - if self.device.type == 'cpu' and not coreml: + if self.device.type == 'cpu' and not coreml and not xml: LOGGER.info('half=True only compatible with GPU or CoreML export, i.e. use device=0 or format=coreml') self.args.half = False assert not self.args.dynamic, '--half not compatible with --dynamic, i.e. use either --half or --dynamic' @@ -184,7 +184,7 @@ class Exporter: y = None for _ in range(2): y = model(im) # dry runs - if self.args.half and not coreml: + if self.args.half and not coreml and not xml: im, model = im.half(), model.half() # to FP16 shape = tuple((y[0] if isinstance(y, tuple) else y).shape) # model output shape LOGGER.info( @@ -332,7 +332,7 @@ class Exporter: f = str(self.file).replace(self.file.suffix, f'_openvino_model{os.sep}') f_onnx = self.file.with_suffix('.onnx') - cmd = f"mo --input_model {f_onnx} --output_dir {f} --data_type {'FP16' if self.args.half else 'FP32'}" + cmd = f"mo --input_model {f_onnx} --output_dir {f} {'--compress_to_fp16' * self.args.half}" subprocess.run(cmd.split(), check=True, env=os.environ) # export yaml_save(Path(f) / self.file.with_suffix('.yaml').name, self.metadata) # add metadata.yaml return f, None diff --git a/ultralytics/yolo/engine/model.py b/ultralytics/yolo/engine/model.py index f8de777..bb5193f 100644 --- a/ultralytics/yolo/engine/model.py +++ b/ultralytics/yolo/engine/model.py @@ -6,7 +6,7 @@ from ultralytics import yolo # noqa from ultralytics.nn.tasks import ClassificationModel, DetectionModel, SegmentationModel, attempt_load_one_weight from ultralytics.yolo.cfg import get_cfg from ultralytics.yolo.engine.exporter import Exporter -from ultralytics.yolo.utils import DEFAULT_CFG_PATH, LOGGER, yaml_load +from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, yaml_load from ultralytics.yolo.utils.checks import check_yaml from ultralytics.yolo.utils.torch_utils import guess_task_from_head, smart_inference_mode @@ -151,7 +151,7 @@ class YOLO: overrides = self.overrides.copy() overrides.update(kwargs) overrides["mode"] = "val" - args = get_cfg(cfg=DEFAULT_CFG_PATH, overrides=overrides) + args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides) args.data = data or args.data args.task = self.task @@ -169,7 +169,7 @@ class YOLO: overrides = self.overrides.copy() overrides.update(kwargs) - args = get_cfg(cfg=DEFAULT_CFG_PATH, overrides=overrides) + args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides) args.task = self.task print(args) @@ -181,8 +181,7 @@ class YOLO: Trains the model on a given dataset. Args: - **kwargs (Any): Any number of arguments representing the training configuration. List of all args can be found in 'config' section. - You can pass all arguments as a yaml file in `cfg`. Other args are ignored if `cfg` file is passed + **kwargs (Any): Any number of arguments representing the training configuration. """ overrides = self.overrides.copy() overrides.update(kwargs) @@ -192,7 +191,7 @@ class YOLO: overrides["task"] = self.task overrides["mode"] = "train" if not overrides.get("data"): - raise AttributeError("dataset not provided! Please define `data` in config.yaml or pass as an argument.") + raise AttributeError("Dataset required but missing, i.e. pass 'data=coco128.yaml'") if overrides.get("resume"): overrides["resume"] = self.ckpt_path @@ -223,6 +222,13 @@ class YOLO: return model_class, trainer_class, validator_class, predictor_class + @property + def names(self): + """ + Returns class names of the loaded model. + """ + return self.model.names + @staticmethod def _reset_ckpt_args(args): args.pop("project", None) diff --git a/ultralytics/yolo/engine/predictor.py b/ultralytics/yolo/engine/predictor.py index 32f4eff..6b263d1 100644 --- a/ultralytics/yolo/engine/predictor.py +++ b/ultralytics/yolo/engine/predictor.py @@ -27,7 +27,6 @@ Usage - formats: """ import platform from collections import defaultdict -from itertools import chain from pathlib import Path import cv2 @@ -62,15 +61,15 @@ class BasePredictor: data_path (str): Path to data. """ - def __init__(self, config=DEFAULT_CFG_PATH, overrides=None): + def __init__(self, cfg=DEFAULT_CFG_PATH, overrides=None): """ Initializes the BasePredictor class. Args: - config (str, optional): Path to a configuration file. Defaults to DEFAULT_CONFIG. + cfg (str, optional): Path to a configuration file. Defaults to DEFAULT_CONFIG. overrides (dict, optional): Configuration overrides. Defaults to None. """ - self.args = get_cfg(config, overrides) + self.args = get_cfg(cfg, overrides) project = self.args.project or Path(SETTINGS['runs_dir']) / self.args.task name = self.args.name or f"{self.args.mode}" self.save_dir = increment_path(Path(project) / name, exist_ok=self.args.exist_ok) @@ -219,7 +218,7 @@ class BasePredictor: self.run_callbacks("on_predict_batch_end") # Print results - if verbose: + if verbose and self.seen: t = tuple(x.t / self.seen * 1E3 for x in self.dt) # speeds per image LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms postprocess per image at shape ' f'{(1, 3, *self.imgsz)}' % t) diff --git a/ultralytics/yolo/engine/trainer.py b/ultralytics/yolo/engine/trainer.py index e28fa8a..6b90ff1 100644 --- a/ultralytics/yolo/engine/trainer.py +++ b/ultralytics/yolo/engine/trainer.py @@ -31,7 +31,8 @@ from ultralytics.yolo.utils.autobatch import check_train_batch_size from ultralytics.yolo.utils.checks import check_file, check_imgsz, print_args from ultralytics.yolo.utils.dist import ddp_cleanup, generate_ddp_command from ultralytics.yolo.utils.files import get_latest_run, increment_path -from ultralytics.yolo.utils.torch_utils import ModelEMA, de_parallel, init_seeds, one_cycle, strip_optimizer +from ultralytics.yolo.utils.torch_utils import (EarlyStopping, ModelEMA, de_parallel, init_seeds, one_cycle, + strip_optimizer) class BaseTrainer: @@ -71,15 +72,15 @@ class BaseTrainer: csv (Path): Path to results CSV file. """ - def __init__(self, config=DEFAULT_CFG_PATH, overrides=None): + def __init__(self, cfg=DEFAULT_CFG_PATH, overrides=None): """ Initializes the BaseTrainer class. Args: - config (str, optional): Path to a configuration file. Defaults to DEFAULT_CONFIG. + cfg (str, optional): Path to a configuration file. Defaults to DEFAULT_CONFIG. overrides (dict, optional): Configuration overrides. Defaults to None. """ - self.args = get_cfg(config, overrides) + self.args = get_cfg(cfg, overrides) self.device = utils.torch_utils.select_device(self.args.device, self.args.batch) self.check_resume() self.console = LOGGER @@ -225,6 +226,7 @@ class BaseTrainer: self.lf = lambda x: (1 - x / self.epochs) * (1.0 - self.args.lrf) + self.args.lrf # linear self.scheduler = lr_scheduler.LambdaLR(self.optimizer, lr_lambda=self.lf) self.scheduler.last_epoch = self.start_epoch - 1 # do not move + self.stopper, self.stop = EarlyStopping(patience=self.args.patience), False # dataloaders batch_size = self.batch_size // world_size if world_size > 1 else self.batch_size @@ -333,10 +335,12 @@ class BaseTrainer: # Validation self.ema.update_attr(self.model, include=['yaml', 'nc', 'args', 'names', 'stride', 'class_weights']) - final_epoch = (epoch + 1 == self.epochs) + final_epoch = (epoch + 1 == self.epochs) or self.stopper.possible_stop + if self.args.val or final_epoch: self.metrics, self.fitness = self.validate() self.save_metrics(metrics={**self.label_loss_items(self.tloss), **self.metrics, **self.lr}) + self.stop = self.stopper(epoch + 1, self.fitness) # Save model if self.args.save or (epoch + 1 == self.epochs): @@ -347,7 +351,15 @@ class BaseTrainer: self.epoch_time = tnow - self.epoch_time_start self.epoch_time_start = tnow self.run_callbacks("on_fit_epoch_end") - # TODO: termination condition + + # Early Stopping + if RANK != -1: # if DDP training + broadcast_list = [self.stop if RANK == 0 else None] + dist.broadcast_object_list(broadcast_list, 0) # broadcast 'stop' to all ranks + if RANK != 0: + self.stop = broadcast_list[0] + if self.stop: + break # must break all DDP ranks if rank in {-1, 0}: # Do final val with best.pt diff --git a/ultralytics/yolo/utils/__init__.py b/ultralytics/yolo/utils/__init__.py index 24b3b29..616ce95 100644 --- a/ultralytics/yolo/utils/__init__.py +++ b/ultralytics/yolo/utils/__init__.py @@ -8,9 +8,9 @@ import platform import sys import tempfile import threading -import types import uuid from pathlib import Path +from types import SimpleNamespace from typing import Union import cv2 @@ -55,10 +55,34 @@ HELP_MSG = \ 3. Use the command line interface (CLI): - yolo task=detect mode=train model=yolov8n.yaml args... - classify predict yolov8n-cls.yaml args... - segment val yolov8n-seg.yaml args... - export yolov8n.pt format=onnx args... + YOLOv8 'yolo' CLI commands use the following syntax: + + yolo TASK MODE ARGS + + Where TASK (optional) is one of [detect, segment, classify] + MODE (required) is one of [train, val, predict, export] + ARGS (optional) are any number of custom 'arg=value' pairs like 'imgsz=320' that override defaults. + See all ARGS at https://docs.ultralytics.com/cfg or with 'yolo cfg' + + - Train a detection model for 10 epochs with an initial learning_rate of 0.01 + yolo detect train data=coco128.yaml model=yolov8n.pt epochs=10 lr0=0.01 + + - Predict a YouTube video using a pretrained segmentation model at image size 320: + yolo segment predict model=yolov8n-seg.pt source=https://youtu.be/Zgi9g1ksQHc imgsz=320 + + - Val a pretrained detection model at batch-size 1 and image size 640: + yolo detect val model=yolov8n.pt data=coco128.yaml batch=1 imgsz=640 + + - Export a YOLOv8n classification model to ONNX format at image size 224 by 128 (no TASK required) + yolo export model=yolov8n-cls.pt format=onnx imgsz=224,128 + + - Run special commands: + yolo help + yolo checks + yolo version + yolo settings + yolo copy-cfg + yolo cfg Docs: https://docs.ultralytics.com Community: https://community.ultralytics.com @@ -73,11 +97,24 @@ cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with Py os.environ['NUMEXPR_MAX_THREADS'] = str(NUM_THREADS) # NumExpr max threads os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8' # for deterministic training -# Default config dictionary + +class IterableSimpleNamespace(SimpleNamespace): + """ + Iterable SimpleNamespace class to allow SimpleNamespace to be used with dict() and in for loops + """ + + def __iter__(self): + return iter(vars(self).items()) + + def __str__(self): + return '\n'.join(f"{k}={v}" for k, v in vars(self).items()) + + +# Default configuration with open(DEFAULT_CFG_PATH, errors='ignore') as f: DEFAULT_CFG_DICT = yaml.safe_load(f) DEFAULT_CFG_KEYS = DEFAULT_CFG_DICT.keys() -DEFAULT_CFG = types.SimpleNamespace(**DEFAULT_CFG_DICT) +DEFAULT_CFG = IterableSimpleNamespace(**DEFAULT_CFG_DICT) def is_colab(): @@ -307,14 +344,15 @@ def set_logging(name=LOGGING_NAME, verbose=True): class TryExcept(contextlib.ContextDecorator): # YOLOv8 TryExcept class. Usage: @TryExcept() decorator or 'with TryExcept():' context manager - def __init__(self, msg=''): + def __init__(self, msg='', verbose=True): self.msg = msg + self.verbose = verbose def __enter__(self): pass def __exit__(self, exc_type, value, traceback): - if value: + if self.verbose and value: print(emojis(f"{self.msg}{': ' if self.msg else ''}{value}")) return True @@ -366,6 +404,21 @@ def yaml_load(file='data.yaml', append_filename=False): return {**yaml.safe_load(f), 'yaml_file': str(file)} if append_filename else yaml.safe_load(f) +def yaml_print(yaml_file: Union[str, Path, dict]) -> None: + """ + Pretty prints a yaml file or a yaml-formatted dictionary. + + Args: + yaml_file: The file path of the yaml file or a yaml-formatted dictionary. + + Returns: + None + """ + yaml_dict = yaml_load(yaml_file) if isinstance(yaml_file, (str, Path)) else yaml_file + dump = yaml.dump(yaml_dict, default_flow_style=False) + LOGGER.info(f"Printing '{colorstr('bold', 'black', yaml_file)}'\n\n{dump}") + + def set_sentry(dsn=None): """ Initialize the Sentry SDK for error tracking and reporting if pytest is not currently running. @@ -379,7 +432,6 @@ def set_sentry(dsn=None): debug=False, traces_sample_rate=1.0, release=ultralytics.__version__, - send_default_pii=True, environment='production', # 'dev' or 'production' ignore_errors=[KeyboardInterrupt]) @@ -439,17 +491,6 @@ def set_settings(kwargs, file=USER_CONFIG_DIR / 'settings.yaml'): yaml_save(file, SETTINGS) -def print_settings(): - """ - Function that prints Ultralytics settings - """ - import json - s = f'\n{PREFIX}Settings:\n' - s += json.dumps(SETTINGS, indent=2) - s += f"\n\nUpdate settings at {USER_CONFIG_DIR / 'settings.yaml'}" - LOGGER.info(s) - - # Run below code on utils init ----------------------------------------------------------------------------------------- # Set logger diff --git a/ultralytics/yolo/utils/callbacks/hub.py b/ultralytics/yolo/utils/callbacks/hub.py index 2f9163e..ffea13e 100644 --- a/ultralytics/yolo/utils/callbacks/hub.py +++ b/ultralytics/yolo/utils/callbacks/hub.py @@ -3,7 +3,7 @@ import json from time import time -from ultralytics.hub.utils import PREFIX, sync_analytics +from ultralytics.hub.utils import PREFIX, traces from ultralytics.yolo.utils import LOGGER @@ -43,24 +43,24 @@ def on_train_end(trainer): LOGGER.info(f"{PREFIX}Training completed successfully ✅\n" f"{PREFIX}Uploading final {session.model_id}") session.upload_model(trainer.epoch, trainer.best, map=trainer.metrics['metrics/mAP50-95(B)'], final=True) - session.alive = False # stop heartbeats + session.shutdown() # stop heartbeats LOGGER.info(f"{PREFIX}View model at https://hub.ultralytics.com/models/{session.model_id} 🚀") def on_train_start(trainer): - sync_analytics(trainer.args) + traces(trainer.args, traces_sample_rate=0.0) def on_val_start(validator): - sync_analytics(validator.args) + traces(validator.args, traces_sample_rate=0.0) def on_predict_start(predictor): - sync_analytics(predictor.args) + traces(predictor.args, traces_sample_rate=0.0) def on_export_start(exporter): - sync_analytics(exporter.args) + traces(exporter.args, traces_sample_rate=0.0) callbacks = { diff --git a/ultralytics/yolo/utils/checks.py b/ultralytics/yolo/utils/checks.py index f3e27c5..7a54df4 100644 --- a/ultralytics/yolo/utils/checks.py +++ b/ultralytics/yolo/utils/checks.py @@ -154,7 +154,7 @@ def check_python(minimum: str = '3.7.0') -> bool: Returns: None """ - check_version(platform.python_version(), minimum, name='Python ', hard=True) + return check_version(platform.python_version(), minimum, name='Python ', hard=True) @TryExcept() @@ -223,8 +223,10 @@ def check_file(file, suffix=''): files = [] for d in 'models', 'yolo/data': # search directories files.extend(glob.glob(str(ROOT / d / '**' / file), recursive=True)) # find file - assert len(files), f'File not found: {file}' # assert file was found - assert len(files) == 1, f"Multiple files match '{file}', specify exact path: {files}" # assert unique + if not files: + raise FileNotFoundError(f"{file} does not exist") + elif len(files) > 1: + raise FileNotFoundError(f"Multiple files match '{file}', specify exact path: {files}") return files[0] # return file diff --git a/ultralytics/yolo/utils/downloads.py b/ultralytics/yolo/utils/downloads.py index 263845c..61f38b5 100644 --- a/ultralytics/yolo/utils/downloads.py +++ b/ultralytics/yolo/utils/downloads.py @@ -141,10 +141,14 @@ def download(url, dir=Path.cwd(), unzip=True, delete=True, curl=False, threads=1 dir = Path(dir) dir.mkdir(parents=True, exist_ok=True) # make directory if threads > 1: - pool = ThreadPool(threads) - pool.imap(lambda x: download_one(*x), zip(url, repeat(dir))) # multithreaded - pool.close() - pool.join() + # pool = ThreadPool(threads) + # pool.imap(lambda x: download_one(*x), zip(url, repeat(dir))) # multithreaded + # pool.close() + # pool.join() + with ThreadPool(threads) as pool: + pool.imap(lambda x: download_one(*x), zip(url, repeat(dir))) # multithreaded + pool.close() + pool.join() else: for u in [url] if isinstance(url, (str, Path)) else url: download_one(u, dir) diff --git a/ultralytics/yolo/utils/torch_utils.py b/ultralytics/yolo/utils/torch_utils.py index c01ea77..78cb34e 100644 --- a/ultralytics/yolo/utils/torch_utils.py +++ b/ultralytics/yolo/utils/torch_utils.py @@ -62,7 +62,9 @@ def select_device(device='', batch_size=0, newline=False): # device = None or 'cpu' or 0 or '0' or '0,1,2,3' ver = git_describe() or ultralytics.__version__ # git commit or pip package version s = f'Ultralytics YOLOv{ver} 🚀 Python-{platform.python_version()} torch-{torch.__version__} ' - device = str(device).strip().lower().replace('cuda:', '').replace('none', '') # to string, 'cuda:0' to '0' + device = str(device).lower() + for remove in 'cuda:', 'none', '(', ')', '[', ']', "'", ' ': + device = device.replace(remove, '') # to string, 'cuda:0' -> '0' and '(0, 1)' -> '0,1' cpu = device == 'cpu' mps = device == 'mps' # Apple Metal Performance Shaders (MPS) if cpu or mps: @@ -369,3 +371,26 @@ def profile(input, ops, n=10, device=None): results.append(None) torch.cuda.empty_cache() return results + + +class EarlyStopping: + # early stopper + def __init__(self, patience=30): + self.best_fitness = 0.0 # i.e. mAP + self.best_epoch = 0 + self.patience = patience or float('inf') # epochs to wait after fitness stops improving to stop + self.possible_stop = False # possible stop may occur next epoch + + def __call__(self, epoch, fitness): + if fitness >= self.best_fitness: # >= 0 to allow for early zero-fitness stage of training + self.best_epoch = epoch + self.best_fitness = fitness + delta = epoch - self.best_epoch # epochs without improvement + self.possible_stop = delta >= (self.patience - 1) # possible stop may occur next epoch + stop = delta >= self.patience # stop training if patience exceeded + if stop: + LOGGER.info(f'Stopping training early as no improvement observed in last {self.patience} epochs. ' + f'Best results observed at epoch {self.best_epoch}, best model saved as best.pt.\n' + f'To update EarlyStopping(patience={self.patience}) pass a new patience value, ' + f'i.e. `patience=300` or use `patience=0` to disable EarlyStopping.') + return stop diff --git a/ultralytics/yolo/v8/classify/predict.py b/ultralytics/yolo/v8/classify/predict.py index bd7768b..917d606 100644 --- a/ultralytics/yolo/v8/classify/predict.py +++ b/ultralytics/yolo/v8/classify/predict.py @@ -4,7 +4,7 @@ import torch from ultralytics.yolo.engine.predictor import BasePredictor from ultralytics.yolo.engine.results import Results -from ultralytics.yolo.utils import DEFAULT_CFG, ROOT, is_git_directory +from ultralytics.yolo.utils import DEFAULT_CFG, ROOT from ultralytics.yolo.utils.plotting import Annotator @@ -65,7 +65,7 @@ class ClassificationPredictor(BasePredictor): def predict(cfg=DEFAULT_CFG): cfg.model = cfg.model or "yolov8n-cls.pt" # or "resnet18" - cfg.source = cfg.source if cfg.source is not None else ROOT / "assets" if is_git_directory() \ + cfg.source = cfg.source if cfg.source is not None else ROOT / "assets" if (ROOT / "assets").exists() \ else "https://ultralytics.com/images/bus.jpg" predictor = ClassificationPredictor(cfg) predictor.predict_cli() diff --git a/ultralytics/yolo/v8/detect/predict.py b/ultralytics/yolo/v8/detect/predict.py index 452c4f6..581b686 100644 --- a/ultralytics/yolo/v8/detect/predict.py +++ b/ultralytics/yolo/v8/detect/predict.py @@ -4,7 +4,7 @@ import torch from ultralytics.yolo.engine.predictor import BasePredictor from ultralytics.yolo.engine.results import Results -from ultralytics.yolo.utils import DEFAULT_CFG, ROOT, is_git_directory, ops +from ultralytics.yolo.utils import DEFAULT_CFG, ROOT, ops from ultralytics.yolo.utils.plotting import Annotator, colors, save_one_box @@ -83,7 +83,7 @@ class DetectionPredictor(BasePredictor): def predict(cfg=DEFAULT_CFG): cfg.model = cfg.model or "yolov8n.pt" - cfg.source = cfg.source if cfg.source is not None else ROOT / "assets" if is_git_directory() \ + cfg.source = cfg.source if cfg.source is not None else ROOT / "assets" if (ROOT / "assets").exists() \ else "https://ultralytics.com/images/bus.jpg" predictor = DetectionPredictor(cfg) predictor.predict_cli() diff --git a/ultralytics/yolo/v8/segment/predict.py b/ultralytics/yolo/v8/segment/predict.py index ed8f365..8f41e8b 100644 --- a/ultralytics/yolo/v8/segment/predict.py +++ b/ultralytics/yolo/v8/segment/predict.py @@ -3,7 +3,7 @@ import torch from ultralytics.yolo.engine.results import Results -from ultralytics.yolo.utils import DEFAULT_CFG, ROOT, is_git_directory, ops +from ultralytics.yolo.utils import DEFAULT_CFG, ROOT, ops from ultralytics.yolo.utils.plotting import colors, save_one_box from ultralytics.yolo.v8.detect.predict import DetectionPredictor @@ -100,7 +100,7 @@ class SegmentationPredictor(DetectionPredictor): def predict(cfg=DEFAULT_CFG): cfg.model = cfg.model or "yolov8n-seg.pt" - cfg.source = cfg.source if cfg.source is not None else ROOT / "assets" if is_git_directory() \ + cfg.source = cfg.source if cfg.source is not None else ROOT / "assets" if (ROOT / "assets").exists() \ else "https://ultralytics.com/images/bus.jpg" predictor = SegmentationPredictor(cfg) predictor.predict_cli()