|
|
|
# SAM model interface
|
|
|
|
|
|
|
|
from ultralytics.yolo.cfg import get_cfg
|
|
|
|
|
|
|
|
from .build import build_sam
|
|
|
|
from .predict import Predictor
|
|
|
|
|
|
|
|
|
|
|
|
class SAM:
|
|
|
|
|
|
|
|
def __init__(self, model='sam_b.pt') -> None:
|
|
|
|
if model and not model.endswith('.pt') and not model.endswith('.pth'):
|
|
|
|
# Should raise AssertionError instead?
|
|
|
|
raise NotImplementedError('Segment anything prediction requires pre-trained checkpoint')
|
|
|
|
self.model = build_sam(model)
|
|
|
|
self.predictor = None # reuse predictor
|
|
|
|
|
|
|
|
def predict(self, source, stream=False, **kwargs):
|
|
|
|
"""Predicts and returns segmentation masks for given image or video source."""
|
|
|
|
overrides = dict(conf=0.25, task='segment', mode='predict')
|
|
|
|
overrides.update(kwargs) # prefer kwargs
|
|
|
|
if not self.predictor:
|
|
|
|
self.predictor = Predictor(overrides=overrides)
|
|
|
|
self.predictor.setup_model(model=self.model)
|
|
|
|
else: # only update args if predictor is already setup
|
|
|
|
self.predictor.args = get_cfg(self.predictor.args, overrides)
|
|
|
|
return self.predictor(source, stream=stream)
|
|
|
|
|
|
|
|
def train(self, **kwargs):
|
|
|
|
"""Function trains models but raises an error as SAM models do not support training."""
|
|
|
|
raise NotImplementedError("SAM models don't support training")
|
|
|
|
|
|
|
|
def val(self, **kwargs):
|
|
|
|
"""Run validation given dataset."""
|
|
|
|
raise NotImplementedError("SAM models don't support validation")
|