You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
97 lines
3.2 KiB
97 lines
3.2 KiB
2 years ago
|
<img width="1024" src="https://github.com/ultralytics/assets/raw/main/yolov8/banner-integrations.png">
|
||
|
|
||
2 years ago
|
Object tracking is a task that involves identifying the location and class of objects, then assigning a unique ID to
|
||
|
that detection in video streams.
|
||
|
|
||
|
The output of tracker is the same as detection with an added object ID.
|
||
|
|
||
|
## Available Trackers
|
||
|
|
||
|
The following tracking algorithms have been implemented and can be enabled by passing `tracker=tracker_type.yaml`
|
||
|
|
||
|
* [BoT-SORT](https://github.com/NirAharon/BoT-SORT) - `botsort.yaml`
|
||
|
* [ByteTrack](https://github.com/ifzhang/ByteTrack) - `bytetrack.yaml`
|
||
|
|
||
|
The default tracker is BoT-SORT.
|
||
|
|
||
|
## Tracking
|
||
|
|
||
|
Use a trained YOLOv8n/YOLOv8n-seg model to run tracker on video streams.
|
||
|
|
||
|
!!! example ""
|
||
|
|
||
|
=== "Python"
|
||
|
|
||
|
```python
|
||
|
from ultralytics import YOLO
|
||
|
|
||
|
# Load a model
|
||
|
model = YOLO("yolov8n.pt") # load an official detection model
|
||
|
model = YOLO("yolov8n-seg.pt") # load an official segmentation model
|
||
|
model = YOLO("path/to/best.pt") # load a custom model
|
||
|
|
||
|
# Track with the model
|
||
|
results = model.track(source="https://youtu.be/Zgi9g1ksQHc", show=True)
|
||
|
results = model.track(source="https://youtu.be/Zgi9g1ksQHc", show=True, tracker="bytetrack.yaml")
|
||
|
```
|
||
|
=== "CLI"
|
||
|
|
||
|
```bash
|
||
|
yolo track model=yolov8n.pt source="https://youtu.be/Zgi9g1ksQHc" # official detection model
|
||
|
yolo track model=yolov8n-seg.pt source=... # official segmentation model
|
||
|
yolo track model=path/to/best.pt source=... # custom model
|
||
|
yolo track model=path/to/best.pt tracker="bytetrack.yaml" # bytetrack tracker
|
||
|
|
||
|
```
|
||
|
|
||
2 years ago
|
As in the above usage, we support both the detection and segmentation models for tracking and the only thing you need to
|
||
|
do is loading the corresponding (detection or segmentation) model.
|
||
2 years ago
|
|
||
|
## Configuration
|
||
2 years ago
|
|
||
2 years ago
|
### Tracking
|
||
2 years ago
|
|
||
|
Tracking shares the configuration with predict, i.e `conf`, `iou`, `show`. More configurations please refer
|
||
|
to [predict page](https://docs.ultralytics.com/cfg/#prediction).
|
||
2 years ago
|
!!! example ""
|
||
|
|
||
|
=== "Python"
|
||
|
|
||
|
```python
|
||
|
from ultralytics import YOLO
|
||
|
|
||
|
model = YOLO("yolov8n.pt")
|
||
|
results = model.track(source="https://youtu.be/Zgi9g1ksQHc", conf=0.3, iou=0.5, show=True)
|
||
|
```
|
||
|
=== "CLI"
|
||
|
|
||
|
```bash
|
||
|
yolo track model=yolov8n.pt source="https://youtu.be/Zgi9g1ksQHc" conf=0.3, iou=0.5 show
|
||
|
|
||
|
```
|
||
|
|
||
|
### Tracker
|
||
2 years ago
|
|
||
|
We also support using a modified tracker config file, just copy a config file i.e `custom_tracker.yaml`
|
||
|
from [ultralytics/tracker/cfg](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/tracker/cfg) and modify
|
||
|
any configurations(expect the `tracker_type`) you need to.
|
||
2 years ago
|
!!! example ""
|
||
|
|
||
|
=== "Python"
|
||
|
|
||
|
```python
|
||
|
from ultralytics import YOLO
|
||
|
|
||
|
model = YOLO("yolov8n.pt")
|
||
|
results = model.track(source="https://youtu.be/Zgi9g1ksQHc", tracker='custom_tracker.yaml')
|
||
|
```
|
||
|
=== "CLI"
|
||
|
|
||
|
```bash
|
||
|
yolo track model=yolov8n.pt source="https://youtu.be/Zgi9g1ksQHc" tracker='custom_tracker.yaml'
|
||
|
```
|
||
2 years ago
|
|
||
|
Please refer to [ultralytics/tracker/cfg](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/tracker/cfg)
|
||
2 years ago
|
page
|
||
2 years ago
|
|