You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
55 lines
1.5 KiB
55 lines
1.5 KiB
1 year ago
|
# YOLOv8 OnnxRuntime C++
|
||
|
|
||
|
This example demonstrates how to perform inference using YOLOv8 in C++ with ONNX Runtime and OpenCV's API.
|
||
|
|
||
|
We recommend using Visual Studio to build the project.
|
||
|
|
||
|
## Benefits
|
||
|
|
||
|
- Friendly for deployment in the industrial sector.
|
||
|
- Faster than OpenCV's DNN inference on both CPU and GPU.
|
||
|
- Supports CUDA acceleration.
|
||
|
- Easy to add FP16 inference (using template functions).
|
||
|
|
||
|
## Exporting YOLOv8 Models
|
||
|
|
||
|
To export YOLOv8 models, use the following Python script:
|
||
|
|
||
|
```python
|
||
|
from ultralytics import YOLO
|
||
|
|
||
|
# Load a YOLOv8 model
|
||
|
model = YOLO("yolov8n.pt")
|
||
|
|
||
|
# Export the model
|
||
|
model.export(format="onnx", opset=12, simplify=True, dynamic=False, imgsz=640)
|
||
|
```
|
||
|
|
||
|
## Dependencies
|
||
|
|
||
|
| Dependency | Version |
|
||
|
| ----------------------- | -------- |
|
||
|
| Onnxruntime-win-x64-gpu | >=1.14.1 |
|
||
|
| OpenCV | >=4.0.0 |
|
||
|
| C++ | >=17 |
|
||
|
|
||
|
Note: The dependency on C++17 is due to the usage of the C++17 filesystem feature.
|
||
|
|
||
|
## Usage
|
||
|
|
||
|
```c++
|
||
|
// CPU inference
|
||
|
DCSP_INIT_PARAM params{ model_path, YOLO_ORIGIN_V8, {imgsz_w, imgsz_h}, class_num, 0.1, 0.5, false};
|
||
|
// GPU inference
|
||
|
DCSP_INIT_PARAM params{ model_path, YOLO_ORIGIN_V8, {imgsz_w, imgsz_h}, class_num, 0.1, 0.5, true};
|
||
|
|
||
|
// Load your image
|
||
|
cv::Mat img = cv::imread(img_path);
|
||
|
|
||
|
char* ret = p1->CreateSession(params);
|
||
|
|
||
|
ret = p->RunSession(img, res);
|
||
|
```
|
||
|
|
||
|
This repository should also work for YOLOv5, which needs a permute operator for the output of the YOLOv5 model, but this has not been implemented yet.
|