You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

354 lines
14 KiB

# Ultralytics YOLO 🚀, GPL-3.0 license
import sys
from pathlib import Path
from typing import List
from ultralytics import yolo # noqa
from ultralytics.nn.tasks import (ClassificationModel, DetectionModel, SegmentationModel, attempt_load_one_weight,
guess_model_task, nn)
from ultralytics.yolo.cfg import get_cfg
from ultralytics.yolo.engine.exporter import Exporter
from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, RANK, callbacks, yaml_load
from ultralytics.yolo.utils.checks import check_file, check_imgsz, check_yaml
from ultralytics.yolo.utils.downloads import GITHUB_ASSET_STEMS
from ultralytics.yolo.utils.torch_utils import smart_inference_mode
# Map head to model, trainer, validator, and predictor classes
MODEL_MAP = {
'classify': [
ClassificationModel, 'yolo.TYPE.classify.ClassificationTrainer', 'yolo.TYPE.classify.ClassificationValidator',
'yolo.TYPE.classify.ClassificationPredictor'],
'detect': [
DetectionModel, 'yolo.TYPE.detect.DetectionTrainer', 'yolo.TYPE.detect.DetectionValidator',
'yolo.TYPE.detect.DetectionPredictor'],
'segment': [
SegmentationModel, 'yolo.TYPE.segment.SegmentationTrainer', 'yolo.TYPE.segment.SegmentationValidator',
'yolo.TYPE.segment.SegmentationPredictor']}
class YOLO:
"""
YOLO (You Only Look Once) object detection model.
Args:
model (str, Path): Path to the model file to load or create.
type (str): Type/version of models to use. Defaults to "v8".
Attributes:
type (str): Type/version of models being used.
ModelClass (Any): Model class.
TrainerClass (Any): Trainer class.
ValidatorClass (Any): Validator class.
PredictorClass (Any): Predictor class.
predictor (Any): Predictor object.
model (Any): Model object.
trainer (Any): Trainer object.
task (str): Type of model task.
ckpt (Any): Checkpoint object if model loaded from *.pt file.
cfg (str): Model configuration if loaded from *.yaml file.
ckpt_path (str): Checkpoint file path.
overrides (dict): Overrides for trainer object.
metrics_data (Any): Data for metrics.
Methods:
__call__(): Alias for predict method.
_new(cfg, verbose=True): Initializes a new model and infers the task type from the model definitions.
_load(weights): Initializes a new model and infers the task type from the model head.
_check_is_pytorch_model(): Raises TypeError if model is not a PyTorch model.
reset(): Resets the model modules.
info(verbose=False): Logs model info.
fuse(): Fuse model for faster inference.
predict(source=None, stream=False, **kwargs): Perform prediction using the YOLO model.
Returns:
list(ultralytics.yolo.engine.results.Results): The prediction results.
"""
def __init__(self, model='yolov8n.pt', type='v8') -> None:
"""
Initializes the YOLO model.
Args:
model (str, Path): model to load or create
type (str): Type/version of models to use. Defaults to "v8".
"""
self._reset_callbacks()
self.type = type
self.ModelClass = None # model class
self.TrainerClass = None # trainer class
self.ValidatorClass = None # validator class
self.PredictorClass = None # predictor class
self.predictor = None # reuse predictor
self.model = None # model object
self.trainer = None # trainer object
self.task = None # task type
self.ckpt = None # if loaded from *.pt
self.cfg = None # if loaded from *.yaml
self.ckpt_path = None
self.overrides = {} # overrides for trainer object
self.metrics_data = None
# Load or create new YOLO model
suffix = Path(model).suffix
if not suffix and Path(model).stem in GITHUB_ASSET_STEMS:
model, suffix = Path(model).with_suffix('.pt'), '.pt' # add suffix, i.e. yolov8n -> yolov8n.pt
if suffix == '.yaml':
self._new(model)
else:
self._load(model)
def __call__(self, source=None, stream=False, **kwargs):
return self.predict(source, stream, **kwargs)
def _new(self, cfg: str, verbose=True):
"""
Initializes a new model and infers the task type from the model definitions.
Args:
cfg (str): model configuration file
verbose (bool): display model info on load
"""
self.cfg = check_yaml(cfg) # check YAML
cfg_dict = yaml_load(self.cfg, append_filename=True) # model dict
self.task = guess_model_task(cfg_dict)
self.ModelClass, self.TrainerClass, self.ValidatorClass, self.PredictorClass = self._assign_ops_from_task()
self.model = self.ModelClass(cfg_dict, verbose=verbose and RANK == -1) # initialize
self.overrides['model'] = self.cfg
def _load(self, weights: str):
"""
Initializes a new model and infers the task type from the model head.
Args:
weights (str): model checkpoint to be loaded
"""
suffix = Path(weights).suffix
if suffix == '.pt':
self.model, self.ckpt = attempt_load_one_weight(weights)
self.task = self.model.args['task']
self.overrides = self.model.args
self._reset_ckpt_args(self.overrides)
self.ckpt_path = self.model.pt_path
else:
weights = check_file(weights)
self.model, self.ckpt = weights, None
self.task = guess_model_task(weights)
self.ckpt_path = weights
self.overrides['model'] = weights
self.ModelClass, self.TrainerClass, self.ValidatorClass, self.PredictorClass = self._assign_ops_from_task()
def _check_is_pytorch_model(self):
"""
Raises TypeError is model is not a PyTorch model
"""
if not isinstance(self.model, nn.Module):
raise TypeError(f"model='{self.model}' must be a *.pt PyTorch model, but is a different type. "
f'PyTorch models can be used to train, val, predict and export, i.e. '
f"'yolo export model=yolov8n.pt', but exported formats like ONNX, TensorRT etc. only "
f"support 'predict' and 'val' modes, i.e. 'yolo predict model=yolov8n.onnx'.")
def reset(self):
"""
Resets the model modules.
"""
self._check_is_pytorch_model()
for m in self.model.modules():
if hasattr(m, 'reset_parameters'):
m.reset_parameters()
for p in self.model.parameters():
p.requires_grad = True
def info(self, verbose=False):
"""
Logs model info.
Args:
verbose (bool): Controls verbosity.
"""
self._check_is_pytorch_model()
self.model.info(verbose=verbose)
def fuse(self):
self._check_is_pytorch_model()
self.model.fuse()
def predict(self, source=None, stream=False, **kwargs):
"""
Perform prediction using the YOLO model.
Args:
source (str | int | PIL | np.ndarray): The source of the image to make predictions on.
Accepts all source types accepted by the YOLO model.
stream (bool): Whether to stream the predictions or not. Defaults to False.
**kwargs : Additional keyword arguments passed to the predictor.
Check the 'configuration' section in the documentation for all available options.
Returns:
(List[ultralytics.yolo.engine.results.Results]): The prediction results.
"""
overrides = self.overrides.copy()
overrides['conf'] = 0.25
overrides.update(kwargs)
overrides['mode'] = kwargs.get('mode', 'predict')
assert overrides['mode'] in ['track', 'predict']
overrides['save'] = kwargs.get('save', False) # not save files by default
if not self.predictor:
self.predictor = self.PredictorClass(overrides=overrides)
self.predictor.setup_model(model=self.model)
else: # only update args if predictor is already setup
self.predictor.args = get_cfg(self.predictor.args, overrides)
is_cli = sys.argv[0].endswith('yolo') or sys.argv[0].endswith('ultralytics')
return self.predictor.predict_cli(source=source) if is_cli else self.predictor(source=source, stream=stream)
@smart_inference_mode()
def track(self, source=None, stream=False, **kwargs):
from ultralytics.tracker.track import register_tracker
register_tracker(self)
# ByteTrack-based method needs low confidence predictions as input
conf = kwargs.get('conf') or 0.1
kwargs['conf'] = conf
kwargs['mode'] = 'track'
return self.predict(source=source, stream=stream, **kwargs)
@smart_inference_mode()
def val(self, data=None, **kwargs):
"""
Validate a model on a given dataset .
Args:
data (str): The dataset to validate on. Accepts all formats accepted by yolo
**kwargs : Any other args accepted by the validators. To see all args check 'configuration' section in docs
"""
overrides = self.overrides.copy()
overrides['rect'] = True # rect batches as default
overrides.update(kwargs)
overrides['mode'] = 'val'
args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides)
args.data = data or args.data
args.task = self.task
if args.imgsz == DEFAULT_CFG.imgsz and not isinstance(self.model, (str, Path)):
args.imgsz = self.model.args['imgsz'] # use trained imgsz unless custom value is passed
args.imgsz = check_imgsz(args.imgsz, max_dim=1)
validator = self.ValidatorClass(args=args)
validator(model=self.model)
self.metrics_data = validator.metrics
return validator.metrics
def export(self, **kwargs):
"""
Export model.
Args:
**kwargs : Any other args accepted by the predictors. To see all args check 'configuration' section in docs
"""
self._check_is_pytorch_model()
overrides = self.overrides.copy()
overrides.update(kwargs)
args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides)
args.task = self.task
if args.imgsz == DEFAULT_CFG.imgsz:
args.imgsz = self.model.args['imgsz'] # use trained imgsz unless custom value is passed
if args.batch == DEFAULT_CFG.batch:
args.batch = 1 # default to 1 if not modified
exporter = Exporter(overrides=args)
return exporter(model=self.model)
def train(self, **kwargs):
"""
Trains the model on a given dataset.
Args:
**kwargs (Any): Any number of arguments representing the training configuration.
"""
self._check_is_pytorch_model()
overrides = self.overrides.copy()
overrides.update(kwargs)
if kwargs.get('cfg'):
LOGGER.info(f"cfg file passed. Overriding default params with {kwargs['cfg']}.")
overrides = yaml_load(check_yaml(kwargs['cfg']), append_filename=True)
overrides['task'] = self.task
overrides['mode'] = 'train'
if not overrides.get('data'):
raise AttributeError("Dataset required but missing, i.e. pass 'data=coco128.yaml'")
if overrides.get('resume'):
overrides['resume'] = self.ckpt_path
self.trainer = self.TrainerClass(overrides=overrides)
if not overrides.get('resume'): # manually set model only if not resuming
self.trainer.model = self.trainer.get_model(weights=self.model if self.ckpt else None, cfg=self.model.yaml)
self.model = self.trainer.model
self.trainer.train()
# update model and cfg after training
if RANK in {0, -1}:
self.model, _ = attempt_load_one_weight(str(self.trainer.best))
self.overrides = self.model.args
self.metrics_data = getattr(self.trainer.validator, 'metrics', None) # TODO: no metrics returned by DDP
def to(self, device):
"""
Sends the model to the given device.
Args:
device (str): device
"""
self._check_is_pytorch_model()
self.model.to(device)
def _assign_ops_from_task(self):
model_class, train_lit, val_lit, pred_lit = MODEL_MAP[self.task]
trainer_class = eval(train_lit.replace('TYPE', f'{self.type}'))
validator_class = eval(val_lit.replace('TYPE', f'{self.type}'))
predictor_class = eval(pred_lit.replace('TYPE', f'{self.type}'))
return model_class, trainer_class, validator_class, predictor_class
@property
def names(self):
"""
Returns class names of the loaded model.
"""
return self.model.names if hasattr(self.model, 'names') else None
@property
def device(self):
"""
Returns device if PyTorch model
"""
return next(self.model.parameters()).device if isinstance(self.model, nn.Module) else None
@property
def transforms(self):
"""
Returns transform of the loaded model.
"""
return self.model.transforms if hasattr(self.model, 'transforms') else None
@property
def metrics(self):
"""
Returns metrics if computed
"""
if not self.metrics_data:
LOGGER.info('No metrics data found! Run training or validation operation first.')
return self.metrics_data
@staticmethod
def add_callback(event: str, func):
"""
Add callback
"""
callbacks.default_callbacks[event].append(func)
@staticmethod
def _reset_ckpt_args(args):
for arg in 'augment', 'verbose', 'project', 'name', 'exist_ok', 'resume', 'batch', 'epochs', 'cache', \
'save_json', 'half', 'v5loader', 'device', 'cfg', 'save', 'rect', 'plots', 'opset', 'simplify':
args.pop(arg, None)
@staticmethod
def _reset_callbacks():
for event in callbacks.default_callbacks.keys():
callbacks.default_callbacks[event] = [callbacks.default_callbacks[event][0]]