|
|
|
# Ultralytics YOLO 🚀, GPL-3.0 license
|
|
|
|
|
|
|
|
import sys
|
|
|
|
from pathlib import Path
|
|
|
|
from typing import List
|
|
|
|
|
|
|
|
from ultralytics import yolo # noqa
|
|
|
|
from ultralytics.nn.tasks import (ClassificationModel, DetectionModel, SegmentationModel, attempt_load_one_weight,
|
|
|
|
guess_model_task, nn)
|
|
|
|
from ultralytics.yolo.cfg import get_cfg
|
|
|
|
from ultralytics.yolo.engine.exporter import Exporter
|
|
|
|
from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, RANK, callbacks, yaml_load
|
|
|
|
from ultralytics.yolo.utils.checks import check_file, check_imgsz, check_yaml
|
|
|
|
from ultralytics.yolo.utils.downloads import GITHUB_ASSET_STEMS
|
|
|
|
from ultralytics.yolo.utils.torch_utils import smart_inference_mode
|
|
|
|
|
|
|
|
# Map head to model, trainer, validator, and predictor classes
|
|
|
|
MODEL_MAP = {
|
|
|
|
"classify": [
|
|
|
|
ClassificationModel, 'yolo.TYPE.classify.ClassificationTrainer', 'yolo.TYPE.classify.ClassificationValidator',
|
|
|
|
'yolo.TYPE.classify.ClassificationPredictor'],
|
|
|
|
"detect": [
|
|
|
|
DetectionModel, 'yolo.TYPE.detect.DetectionTrainer', 'yolo.TYPE.detect.DetectionValidator',
|
|
|
|
'yolo.TYPE.detect.DetectionPredictor'],
|
|
|
|
"segment": [
|
|
|
|
SegmentationModel, 'yolo.TYPE.segment.SegmentationTrainer', 'yolo.TYPE.segment.SegmentationValidator',
|
|
|
|
'yolo.TYPE.segment.SegmentationPredictor']}
|
|
|
|
|
|
|
|
|
|
|
|
class YOLO:
|
|
|
|
"""
|
|
|
|
YOLO
|
|
|
|
|
|
|
|
A python interface which emulates a model-like behaviour by wrapping trainers.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, model='yolov8n.pt', type="v8") -> None:
|
|
|
|
"""
|
|
|
|
Initializes the YOLO object.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
model (str, Path): model to load or create
|
|
|
|
type (str): Type/version of models to use. Defaults to "v8".
|
|
|
|
"""
|
|
|
|
self.type = type
|
|
|
|
self.ModelClass = None # model class
|
|
|
|
self.TrainerClass = None # trainer class
|
|
|
|
self.ValidatorClass = None # validator class
|
|
|
|
self.PredictorClass = None # predictor class
|
|
|
|
self.predictor = None # reuse predictor
|
|
|
|
self.model = None # model object
|
|
|
|
self.trainer = None # trainer object
|
|
|
|
self.task = None # task type
|
|
|
|
self.ckpt = None # if loaded from *.pt
|
|
|
|
self.cfg = None # if loaded from *.yaml
|
|
|
|
self.ckpt_path = None
|
|
|
|
self.overrides = {} # overrides for trainer object
|
|
|
|
self.metrics_data = None
|
|
|
|
|
|
|
|
# Load or create new YOLO model
|
|
|
|
suffix = Path(model).suffix
|
|
|
|
if not suffix and Path(model).stem in GITHUB_ASSET_STEMS:
|
|
|
|
model, suffix = Path(model).with_suffix('.pt'), '.pt' # add suffix, i.e. yolov8n -> yolov8n.pt
|
|
|
|
if suffix == '.yaml':
|
|
|
|
self._new(model)
|
|
|
|
else:
|
|
|
|
self._load(model)
|
|
|
|
|
|
|
|
def __call__(self, source=None, stream=False, **kwargs):
|
|
|
|
return self.predict(source, stream, **kwargs)
|
|
|
|
|
|
|
|
def _new(self, cfg: str, verbose=True):
|
|
|
|
"""
|
|
|
|
Initializes a new model and infers the task type from the model definitions.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
cfg (str): model configuration file
|
|
|
|
verbose (bool): display model info on load
|
|
|
|
"""
|
|
|
|
self.cfg = check_yaml(cfg) # check YAML
|
|
|
|
cfg_dict = yaml_load(self.cfg, append_filename=True) # model dict
|
|
|
|
self.task = guess_model_task(cfg_dict)
|
|
|
|
self.ModelClass, self.TrainerClass, self.ValidatorClass, self.PredictorClass = self._assign_ops_from_task()
|
|
|
|
self.model = self.ModelClass(cfg_dict, verbose=verbose and RANK == -1) # initialize
|
|
|
|
|
|
|
|
def _load(self, weights: str):
|
|
|
|
"""
|
|
|
|
Initializes a new model and infers the task type from the model head.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
weights (str): model checkpoint to be loaded
|
|
|
|
"""
|
|
|
|
suffix = Path(weights).suffix
|
|
|
|
if suffix == '.pt':
|
|
|
|
self.model, self.ckpt = attempt_load_one_weight(weights)
|
|
|
|
self.task = self.model.args["task"]
|
|
|
|
self.overrides = self.model.args
|
|
|
|
self._reset_ckpt_args(self.overrides)
|
|
|
|
else:
|
|
|
|
check_file(weights)
|
|
|
|
self.model, self.ckpt = weights, None
|
|
|
|
self.task = guess_model_task(weights)
|
|
|
|
self.ckpt_path = weights
|
|
|
|
self.ModelClass, self.TrainerClass, self.ValidatorClass, self.PredictorClass = self._assign_ops_from_task()
|
|
|
|
|
|
|
|
def _check_is_pytorch_model(self):
|
|
|
|
"""
|
|
|
|
Raises TypeError is model is not a PyTorch model
|
|
|
|
"""
|
|
|
|
if not isinstance(self.model, nn.Module):
|
|
|
|
raise TypeError(f"model='{self.model}' must be a *.pt PyTorch model, but is a different type. "
|
|
|
|
f"PyTorch models can be used to train, val, predict and export, i.e. "
|
|
|
|
f"'yolo export model=yolov8n.pt', but exported formats like ONNX, TensorRT etc. only "
|
|
|
|
f"support 'predict' and 'val' modes, i.e. 'yolo predict model=yolov8n.onnx'.")
|
|
|
|
|
|
|
|
def reset(self):
|
|
|
|
"""
|
|
|
|
Resets the model modules.
|
|
|
|
"""
|
|
|
|
self._check_is_pytorch_model()
|
|
|
|
for m in self.model.modules():
|
|
|
|
if hasattr(m, 'reset_parameters'):
|
|
|
|
m.reset_parameters()
|
|
|
|
for p in self.model.parameters():
|
|
|
|
p.requires_grad = True
|
|
|
|
|
|
|
|
def info(self, verbose=False):
|
|
|
|
"""
|
|
|
|
Logs model info.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
verbose (bool): Controls verbosity.
|
|
|
|
"""
|
|
|
|
self._check_is_pytorch_model()
|
|
|
|
self.model.info(verbose=verbose)
|
|
|
|
|
|
|
|
def fuse(self):
|
|
|
|
self._check_is_pytorch_model()
|
|
|
|
self.model.fuse()
|
|
|
|
|
|
|
|
def predict(self, source=None, stream=False, **kwargs):
|
|
|
|
"""
|
|
|
|
Perform prediction using the YOLO model.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
source (str | int | PIL | np.ndarray): The source of the image to make predictions on.
|
|
|
|
Accepts all source types accepted by the YOLO model.
|
|
|
|
stream (bool): Whether to stream the predictions or not. Defaults to False.
|
|
|
|
**kwargs : Additional keyword arguments passed to the predictor.
|
|
|
|
Check the 'configuration' section in the documentation for all available options.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
(List[ultralytics.yolo.engine.results.Results]): The prediction results.
|
|
|
|
"""
|
|
|
|
overrides = self.overrides.copy()
|
|
|
|
overrides["conf"] = 0.25
|
|
|
|
overrides.update(kwargs)
|
|
|
|
overrides["mode"] = kwargs.get("mode", "predict")
|
|
|
|
assert overrides["mode"] in ['track', 'predict']
|
|
|
|
overrides["save"] = kwargs.get("save", False) # not save files by default
|
|
|
|
if not self.predictor:
|
|
|
|
self.predictor = self.PredictorClass(overrides=overrides)
|
|
|
|
self.predictor.setup_model(model=self.model)
|
|
|
|
else: # only update args if predictor is already setup
|
|
|
|
self.predictor.args = get_cfg(self.predictor.args, overrides)
|
|
|
|
is_cli = sys.argv[0].endswith('yolo') or sys.argv[0].endswith('ultralytics')
|
|
|
|
return self.predictor.predict_cli(source=source) if is_cli else self.predictor(source=source, stream=stream)
|
|
|
|
|
|
|
|
@smart_inference_mode()
|
|
|
|
def track(self, source=None, stream=False, **kwargs):
|
|
|
|
from ultralytics.tracker.track import register_tracker
|
|
|
|
register_tracker(self)
|
|
|
|
# bytetrack-based method needs low confidence predictions as input
|
|
|
|
conf = kwargs.get("conf") or 0.1
|
|
|
|
kwargs['conf'] = conf
|
|
|
|
kwargs['mode'] = 'track'
|
|
|
|
return self.predict(source=source, stream=stream, **kwargs)
|
|
|
|
|
|
|
|
@smart_inference_mode()
|
|
|
|
def val(self, data=None, **kwargs):
|
|
|
|
"""
|
|
|
|
Validate a model on a given dataset .
|
|
|
|
|
|
|
|
Args:
|
|
|
|
data (str): The dataset to validate on. Accepts all formats accepted by yolo
|
|
|
|
**kwargs : Any other args accepted by the validators. To see all args check 'configuration' section in docs
|
|
|
|
"""
|
|
|
|
overrides = self.overrides.copy()
|
|
|
|
overrides["rect"] = True # rect batches as default
|
|
|
|
overrides.update(kwargs)
|
|
|
|
overrides["mode"] = "val"
|
|
|
|
args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides)
|
|
|
|
args.data = data or args.data
|
|
|
|
args.task = self.task
|
|
|
|
if args.imgsz == DEFAULT_CFG.imgsz and not isinstance(self.model, (str, Path)):
|
|
|
|
args.imgsz = self.model.args['imgsz'] # use trained imgsz unless custom value is passed
|
|
|
|
args.imgsz = check_imgsz(args.imgsz, max_dim=1)
|
|
|
|
|
|
|
|
validator = self.ValidatorClass(args=args)
|
|
|
|
validator(model=self.model)
|
|
|
|
self.metrics_data = validator.metrics
|
|
|
|
|
|
|
|
return validator.metrics
|
|
|
|
|
|
|
|
@smart_inference_mode()
|
|
|
|
def export(self, **kwargs):
|
|
|
|
"""
|
|
|
|
Export model.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
**kwargs : Any other args accepted by the predictors. To see all args check 'configuration' section in docs
|
|
|
|
"""
|
|
|
|
self._check_is_pytorch_model()
|
|
|
|
overrides = self.overrides.copy()
|
|
|
|
overrides.update(kwargs)
|
|
|
|
args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides)
|
|
|
|
args.task = self.task
|
|
|
|
if args.imgsz == DEFAULT_CFG.imgsz:
|
|
|
|
args.imgsz = self.model.args['imgsz'] # use trained imgsz unless custom value is passed
|
|
|
|
if args.batch == DEFAULT_CFG.batch:
|
|
|
|
args.batch = 1 # default to 1 if not modified
|
|
|
|
exporter = Exporter(overrides=args)
|
|
|
|
return exporter(model=self.model)
|
|
|
|
|
|
|
|
def train(self, **kwargs):
|
|
|
|
"""
|
|
|
|
Trains the model on a given dataset.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
**kwargs (Any): Any number of arguments representing the training configuration.
|
|
|
|
"""
|
|
|
|
self._check_is_pytorch_model()
|
|
|
|
overrides = self.overrides.copy()
|
|
|
|
overrides.update(kwargs)
|
|
|
|
if kwargs.get("cfg"):
|
|
|
|
LOGGER.info(f"cfg file passed. Overriding default params with {kwargs['cfg']}.")
|
|
|
|
overrides = yaml_load(check_yaml(kwargs["cfg"]), append_filename=True)
|
|
|
|
overrides["task"] = self.task
|
|
|
|
overrides["mode"] = "train"
|
|
|
|
if not overrides.get("data"):
|
|
|
|
raise AttributeError("Dataset required but missing, i.e. pass 'data=coco128.yaml'")
|
|
|
|
if overrides.get("resume"):
|
|
|
|
overrides["resume"] = self.ckpt_path
|
|
|
|
|
|
|
|
self.trainer = self.TrainerClass(overrides=overrides)
|
|
|
|
if not overrides.get("resume"): # manually set model only if not resuming
|
|
|
|
self.trainer.model = self.trainer.get_model(weights=self.model if self.ckpt else None, cfg=self.model.yaml)
|
|
|
|
self.model = self.trainer.model
|
|
|
|
self.trainer.train()
|
|
|
|
# update model and cfg after training
|
|
|
|
if RANK in {0, -1}:
|
|
|
|
self.model, _ = attempt_load_one_weight(str(self.trainer.best))
|
|
|
|
self.overrides = self.model.args
|
|
|
|
self.metrics_data = getattr(self.trainer.validator, 'metrics', None) # TODO: no metrics returned by DDP
|
|
|
|
|
|
|
|
def to(self, device):
|
|
|
|
"""
|
|
|
|
Sends the model to the given device.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
device (str): device
|
|
|
|
"""
|
|
|
|
self._check_is_pytorch_model()
|
|
|
|
self.model.to(device)
|
|
|
|
|
|
|
|
def _assign_ops_from_task(self):
|
|
|
|
model_class, train_lit, val_lit, pred_lit = MODEL_MAP[self.task]
|
|
|
|
trainer_class = eval(train_lit.replace("TYPE", f"{self.type}"))
|
|
|
|
validator_class = eval(val_lit.replace("TYPE", f"{self.type}"))
|
|
|
|
predictor_class = eval(pred_lit.replace("TYPE", f"{self.type}"))
|
|
|
|
return model_class, trainer_class, validator_class, predictor_class
|
|
|
|
|
|
|
|
@property
|
|
|
|
def names(self):
|
|
|
|
"""
|
|
|
|
Returns class names of the loaded model.
|
|
|
|
"""
|
|
|
|
return self.model.names if hasattr(self.model, 'names') else None
|
|
|
|
|
|
|
|
@property
|
|
|
|
def transforms(self):
|
|
|
|
"""
|
|
|
|
Returns transform of the loaded model.
|
|
|
|
"""
|
|
|
|
return self.model.transforms if hasattr(self.model, 'transforms') else None
|
|
|
|
|
|
|
|
@property
|
|
|
|
def metrics(self):
|
|
|
|
"""
|
|
|
|
Returns metrics if computed
|
|
|
|
"""
|
|
|
|
if not self.metrics_data:
|
|
|
|
LOGGER.info("No metrics data found! Run training or validation operation first.")
|
|
|
|
|
|
|
|
return self.metrics_data
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def add_callback(event: str, func):
|
|
|
|
"""
|
|
|
|
Add callback
|
|
|
|
"""
|
|
|
|
callbacks.default_callbacks[event].append(func)
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def _reset_ckpt_args(args):
|
|
|
|
for arg in 'augment', 'verbose', 'project', 'name', 'exist_ok', 'resume', 'batch', 'epochs', 'cache', \
|
|
|
|
'save_json', 'half', 'v5loader', 'device', 'cfg', 'save', 'rect', 'plots', 'opset':
|
|
|
|
args.pop(arg, None)
|