|
|
|
# Ultralytics YOLO 🚀, GPL-3.0 license
|
|
|
|
|
|
|
|
import torch
|
|
|
|
|
|
|
|
from ultralytics.yolo.engine.results import Results
|
|
|
|
from ultralytics.yolo.utils import DEFAULT_CFG, ROOT, ops
|
|
|
|
from ultralytics.yolo.utils.plotting import colors, save_one_box
|
|
|
|
from ultralytics.yolo.v8.detect.predict import DetectionPredictor
|
|
|
|
|
|
|
|
|
|
|
|
class SegmentationPredictor(DetectionPredictor):
|
|
|
|
|
|
|
|
def postprocess(self, preds, img, orig_img, classes=None):
|
|
|
|
# TODO: filter by classes
|
|
|
|
p = ops.non_max_suppression(preds[0],
|
|
|
|
self.args.conf,
|
|
|
|
self.args.iou,
|
|
|
|
agnostic=self.args.agnostic_nms,
|
|
|
|
max_det=self.args.max_det,
|
|
|
|
nc=len(self.model.names),
|
|
|
|
classes=self.args.classes)
|
|
|
|
results = []
|
|
|
|
proto = preds[1][-1] if len(preds[1]) == 3 else preds[1] # second output is len 3 if pt, but only 1 if exported
|
|
|
|
for i, pred in enumerate(p):
|
|
|
|
shape = orig_img[i].shape if isinstance(orig_img, list) else orig_img.shape
|
|
|
|
if not len(pred):
|
|
|
|
results.append(Results(boxes=pred[:, :6], orig_shape=shape[:2])) # save empty boxes
|
|
|
|
continue
|
|
|
|
if self.args.retina_masks:
|
|
|
|
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], shape).round()
|
|
|
|
masks = ops.process_mask_native(proto[i], pred[:, 6:], pred[:, :4], shape[:2]) # HWC
|
|
|
|
else:
|
|
|
|
masks = ops.process_mask(proto[i], pred[:, 6:], pred[:, :4], img.shape[2:], upsample=True) # HWC
|
|
|
|
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], shape).round()
|
|
|
|
results.append(Results(boxes=pred[:, :6], masks=masks, orig_shape=shape[:2]))
|
|
|
|
return results
|
|
|
|
|
|
|
|
def write_results(self, idx, results, batch):
|
|
|
|
p, im, im0 = batch
|
|
|
|
log_string = ""
|
|
|
|
if len(im.shape) == 3:
|
|
|
|
im = im[None] # expand for batch dim
|
|
|
|
self.seen += 1
|
|
|
|
imc = im0.copy() if self.args.save_crop else im0
|
|
|
|
if self.source_type.webcam or self.source_type.from_img: # batch_size >= 1
|
|
|
|
log_string += f'{idx}: '
|
|
|
|
frame = self.dataset.count
|
|
|
|
else:
|
|
|
|
frame = getattr(self.dataset, 'frame', 0)
|
|
|
|
|
|
|
|
self.data_path = p
|
|
|
|
self.txt_path = str(self.save_dir / 'labels' / p.stem) + ('' if self.dataset.mode == 'image' else f'_{frame}')
|
|
|
|
log_string += '%gx%g ' % im.shape[2:] # print string
|
|
|
|
self.annotator = self.get_annotator(im0)
|
|
|
|
|
|
|
|
result = results[idx]
|
|
|
|
if len(result) == 0:
|
|
|
|
return log_string
|
|
|
|
det, mask = result.boxes, result.masks # getting tensors TODO: mask mask,box inherit for tensor
|
|
|
|
|
|
|
|
# Print results
|
|
|
|
for c in det.cls.unique():
|
|
|
|
n = (det.cls == c).sum() # detections per class
|
|
|
|
log_string += f"{n} {self.model.names[int(c)]}{'s' * (n > 1)}, "
|
|
|
|
|
|
|
|
# Mask plotting
|
|
|
|
self.annotator.masks(
|
|
|
|
mask.masks,
|
|
|
|
colors=[colors(x, True) for x in det.cls],
|
|
|
|
im_gpu=torch.as_tensor(im0, dtype=torch.float16).to(self.device).permute(2, 0, 1).flip(0).contiguous() /
|
|
|
|
255 if self.args.retina_masks else im[idx])
|
|
|
|
|
|
|
|
# Write results
|
|
|
|
for j, d in enumerate(reversed(det)):
|
|
|
|
cls, conf = d.cls.squeeze(), d.conf.squeeze()
|
|
|
|
if self.args.save_txt: # Write to file
|
|
|
|
seg = mask.segments[len(det) - j - 1].copy() # reversed mask.segments
|
|
|
|
seg = seg.reshape(-1) # (n,2) to (n*2)
|
|
|
|
line = (cls, *seg, conf) if self.args.save_conf else (cls, *seg) # label format
|
|
|
|
with open(f'{self.txt_path}.txt', 'a') as f:
|
|
|
|
f.write(('%g ' * len(line)).rstrip() % line + '\n')
|
|
|
|
|
|
|
|
if self.args.save or self.args.save_crop or self.args.show: # Add bbox to image
|
|
|
|
c = int(cls) # integer class
|
|
|
|
name = f"id:{int(d.id.item())} {self.model.names[c]}" if d.id is not None else self.model.names[c]
|
|
|
|
label = None if self.args.hide_labels else (name if self.args.hide_conf else f'{name} {conf:.2f}')
|
|
|
|
self.annotator.box_label(d.xyxy.squeeze(), label, color=colors(c, True)) if self.args.boxes else None
|
|
|
|
if self.args.save_crop:
|
|
|
|
save_one_box(d.xyxy,
|
|
|
|
imc,
|
|
|
|
file=self.save_dir / 'crops' / self.model.model.names[c] / f'{self.data_path.stem}.jpg',
|
|
|
|
BGR=True)
|
|
|
|
|
|
|
|
return log_string
|
|
|
|
|
|
|
|
|
|
|
|
def predict(cfg=DEFAULT_CFG, use_python=False):
|
|
|
|
model = cfg.model or "yolov8n-seg.pt"
|
|
|
|
source = cfg.source if cfg.source is not None else ROOT / "assets" if (ROOT / "assets").exists() \
|
|
|
|
else "https://ultralytics.com/images/bus.jpg"
|
|
|
|
|
|
|
|
args = dict(model=model, source=source)
|
|
|
|
if use_python:
|
|
|
|
from ultralytics import YOLO
|
|
|
|
YOLO(model)(**args)
|
|
|
|
else:
|
|
|
|
predictor = SegmentationPredictor(overrides=args)
|
|
|
|
predictor.predict_cli()
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
predict()
|