|
|
|
# Ultralytics YOLO 🚀, GPL-3.0 license
|
|
|
|
|
|
|
|
import os
|
|
|
|
import shutil
|
|
|
|
|
|
|
|
import psutil
|
|
|
|
import requests
|
|
|
|
from IPython import display # to display images and clear console output
|
|
|
|
|
|
|
|
from ultralytics.hub.auth import Auth
|
|
|
|
from ultralytics.hub.session import HubTrainingSession
|
|
|
|
from ultralytics.hub.utils import PREFIX, split_key
|
|
|
|
from ultralytics.yolo.utils import LOGGER, emojis, is_colab
|
|
|
|
from ultralytics.yolo.utils.torch_utils import select_device
|
|
|
|
from ultralytics.yolo.v8.detect import DetectionTrainer
|
|
|
|
|
|
|
|
|
|
|
|
def checks(verbose=True):
|
|
|
|
if is_colab():
|
|
|
|
shutil.rmtree('sample_data', ignore_errors=True) # remove colab /sample_data directory
|
|
|
|
|
|
|
|
if verbose:
|
|
|
|
# System info
|
|
|
|
gib = 1 << 30 # bytes per GiB
|
|
|
|
ram = psutil.virtual_memory().total
|
|
|
|
total, used, free = shutil.disk_usage("/")
|
|
|
|
display.clear_output()
|
|
|
|
s = f'({os.cpu_count()} CPUs, {ram / gib:.1f} GB RAM, {(total - free) / gib:.1f}/{total / gib:.1f} GB disk)'
|
|
|
|
else:
|
|
|
|
s = ''
|
|
|
|
|
|
|
|
select_device(newline=False)
|
|
|
|
LOGGER.info(f'Setup complete ✅ {s}')
|
|
|
|
|
|
|
|
|
|
|
|
def start(key=''):
|
|
|
|
# Start training models with Ultralytics HUB. Usage: from src.ultralytics import start; start('API_KEY')
|
|
|
|
def request_api_key(attempts=0):
|
|
|
|
"""Prompt the user to input their API key"""
|
|
|
|
import getpass
|
|
|
|
|
|
|
|
max_attempts = 3
|
|
|
|
tries = f"Attempt {str(attempts + 1)} of {max_attempts}" if attempts > 0 else ""
|
|
|
|
LOGGER.info(f"{PREFIX}Login. {tries}")
|
|
|
|
input_key = getpass.getpass("Enter your Ultralytics HUB API key:\n")
|
|
|
|
auth.api_key, model_id = split_key(input_key)
|
|
|
|
if not auth.authenticate():
|
|
|
|
attempts += 1
|
|
|
|
LOGGER.warning(f"{PREFIX}Invalid API key ⚠️\n")
|
|
|
|
if attempts < max_attempts:
|
|
|
|
return request_api_key(attempts)
|
|
|
|
raise ConnectionError(emojis(f"{PREFIX}Failed to authenticate ❌"))
|
|
|
|
else:
|
|
|
|
return model_id
|
|
|
|
|
|
|
|
try:
|
|
|
|
api_key, model_id = split_key(key)
|
|
|
|
auth = Auth(api_key) # attempts cookie login if no api key is present
|
|
|
|
attempts = 1 if len(key) else 0
|
|
|
|
if not auth.get_state():
|
|
|
|
if len(key):
|
|
|
|
LOGGER.warning(f"{PREFIX}Invalid API key ⚠️\n")
|
|
|
|
model_id = request_api_key(attempts)
|
|
|
|
LOGGER.info(f"{PREFIX}Authenticated ✅")
|
|
|
|
if not model_id:
|
|
|
|
raise ConnectionError(emojis('Connecting with global API key is not currently supported. ❌'))
|
|
|
|
session = HubTrainingSession(model_id=model_id, auth=auth)
|
|
|
|
session.check_disk_space()
|
|
|
|
|
|
|
|
# TODO: refactor, hardcoded for v8
|
|
|
|
args = session.model.copy()
|
|
|
|
args.pop("id")
|
|
|
|
args.pop("status")
|
|
|
|
args.pop("weights")
|
|
|
|
args["data"] = "coco128.yaml"
|
|
|
|
args["model"] = "yolov8n.yaml"
|
|
|
|
args["batch_size"] = 16
|
|
|
|
args["imgsz"] = 64
|
|
|
|
|
|
|
|
trainer = DetectionTrainer(overrides=args)
|
|
|
|
session.register_callbacks(trainer)
|
|
|
|
setattr(trainer, 'hub_session', session)
|
|
|
|
trainer.train()
|
|
|
|
except Exception as e:
|
|
|
|
LOGGER.warning(f"{PREFIX}{e}")
|
|
|
|
|
|
|
|
|
|
|
|
def reset_model(key=''):
|
|
|
|
# Reset a trained model to an untrained state
|
|
|
|
api_key, model_id = split_key(key)
|
|
|
|
r = requests.post('https://api.ultralytics.com/model-reset', json={"apiKey": api_key, "modelId": model_id})
|
|
|
|
|
|
|
|
if r.status_code == 200:
|
|
|
|
LOGGER.info(f"{PREFIX}model reset successfully")
|
|
|
|
return
|
|
|
|
LOGGER.warning(f"{PREFIX}model reset failure {r.status_code} {r.reason}")
|
|
|
|
|
|
|
|
|
|
|
|
def export_model(key='', format='torchscript'):
|
|
|
|
# Export a model to all formats
|
|
|
|
api_key, model_id = split_key(key)
|
|
|
|
formats = ('torchscript', 'onnx', 'openvino', 'engine', 'coreml', 'saved_model', 'pb', 'tflite', 'edgetpu', 'tfjs',
|
|
|
|
'ultralytics_tflite', 'ultralytics_coreml')
|
|
|
|
assert format in formats, f"ERROR: Unsupported export format '{format}' passed, valid formats are {formats}"
|
|
|
|
|
|
|
|
r = requests.post('https://api.ultralytics.com/export',
|
|
|
|
json={
|
|
|
|
"apiKey": api_key,
|
|
|
|
"modelId": model_id,
|
|
|
|
"format": format})
|
|
|
|
assert r.status_code == 200, f"{PREFIX}{format} export failure {r.status_code} {r.reason}"
|
|
|
|
LOGGER.info(f"{PREFIX}{format} export started ✅")
|
|
|
|
|
|
|
|
|
|
|
|
def get_export(key='', format='torchscript'):
|
|
|
|
# Get an exported model dictionary with download URL
|
|
|
|
api_key, model_id = split_key(key)
|
|
|
|
formats = ('torchscript', 'onnx', 'openvino', 'engine', 'coreml', 'saved_model', 'pb', 'tflite', 'edgetpu', 'tfjs',
|
|
|
|
'ultralytics_tflite', 'ultralytics_coreml')
|
|
|
|
assert format in formats, f"ERROR: Unsupported export format '{format}' passed, valid formats are {formats}"
|
|
|
|
|
|
|
|
r = requests.post('https://api.ultralytics.com/get-export',
|
|
|
|
json={
|
|
|
|
"apiKey": api_key,
|
|
|
|
"modelId": model_id,
|
|
|
|
"format": format})
|
|
|
|
assert r.status_code == 200, f"{PREFIX}{format} get_export failure {r.status_code} {r.reason}"
|
|
|
|
return r.json()
|
|
|
|
|
|
|
|
|
|
|
|
# temp. For checking
|
|
|
|
if __name__ == "__main__":
|
|
|
|
start(key="b3fba421be84a20dbe68644e14436d1cce1b0a0aaa_HeMfHgvHsseMPhdq7Ylz")
|