|
|
|
import torch
|
|
|
|
import yaml
|
|
|
|
|
|
|
|
from ultralytics import yolo
|
|
|
|
from ultralytics.yolo.utils import LOGGER
|
|
|
|
from ultralytics.yolo.utils.checks import check_yaml
|
|
|
|
from ultralytics.yolo.utils.files import yaml_load
|
|
|
|
from ultralytics.yolo.utils.modeling import attempt_load_weights
|
|
|
|
from ultralytics.yolo.utils.modeling.tasks import ClassificationModel, DetectionModel, SegmentationModel
|
|
|
|
|
|
|
|
# map head: [model, trainer]
|
|
|
|
MODEL_MAP = {
|
|
|
|
"classify": [ClassificationModel, 'yolo.TYPE.classify.ClassificationTrainer'],
|
|
|
|
"detect": [DetectionModel, 'yolo.TYPE.detect.DetectionTrainer'],
|
|
|
|
"segment": [SegmentationModel, 'yolo.TYPE.segment.SegmentationTrainer']}
|
|
|
|
|
|
|
|
|
|
|
|
class YOLO:
|
|
|
|
"""
|
|
|
|
Python interface which emulates a model-like behaviour by wrapping trainers.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, type="v8") -> None:
|
|
|
|
"""
|
|
|
|
Args:
|
|
|
|
type (str): Type/version of models to use
|
|
|
|
"""
|
|
|
|
self.type = type
|
|
|
|
self.ModelClass = None
|
|
|
|
self.TrainerClass = None
|
|
|
|
self.model = None
|
|
|
|
self.trainer = None
|
|
|
|
self.task = None
|
|
|
|
self.ckpt = None
|
|
|
|
|
|
|
|
def new(self, cfg: str):
|
|
|
|
"""
|
|
|
|
Initializes a new model and infers the task type from the model definitions
|
|
|
|
|
|
|
|
Args:
|
|
|
|
cfg (str): model configuration file
|
|
|
|
"""
|
|
|
|
cfg = check_yaml(cfg) # check YAML
|
|
|
|
with open(cfg, encoding='ascii', errors='ignore') as f:
|
|
|
|
cfg = yaml.safe_load(f) # model dict
|
|
|
|
self.ModelClass, self.TrainerClass, self.task = self._guess_model_trainer_and_task(cfg["head"][-1][-2])
|
|
|
|
self.model = self.ModelClass(cfg) # initialize
|
|
|
|
|
|
|
|
def load(self, weights: str):
|
|
|
|
"""
|
|
|
|
Initializes a new model and infers the task type from the model head
|
|
|
|
|
|
|
|
Args:
|
|
|
|
weights (str): model checkpoint to be loaded
|
|
|
|
|
|
|
|
"""
|
|
|
|
self.ckpt = torch.load(weights, map_location="cpu")
|
|
|
|
self.task = self.ckpt["train_args"]["task"]
|
|
|
|
_, trainer_class_literal = MODEL_MAP[self.task]
|
|
|
|
self.TrainerClass = eval(trainer_class_literal.replace("TYPE", f"v{self.type}"))
|
|
|
|
self.model = attempt_load_weights(weights)
|
|
|
|
|
|
|
|
def reset(self):
|
|
|
|
"""
|
|
|
|
Resets the model modules .
|
|
|
|
"""
|
|
|
|
for m in self.model.modules():
|
|
|
|
if hasattr(m, 'reset_parameters'):
|
|
|
|
m.reset_parameters()
|
|
|
|
for p in self.model.parameters():
|
|
|
|
p.requires_grad = True
|
|
|
|
|
|
|
|
def train(self, **kwargs):
|
|
|
|
"""
|
|
|
|
Trains the model on given dataset.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
**kwargs (Any): Any number of arguments representing the training configuration. List of all args can be found in 'config' section.
|
|
|
|
You can pass all arguments as a yaml file in `cfg`. Other args are ignored if `cfg` file is passed
|
|
|
|
"""
|
|
|
|
if not self.model and not self.ckpt:
|
|
|
|
raise Exception("model not initialized. Use .new() or .load()")
|
|
|
|
|
|
|
|
overrides = kwargs
|
|
|
|
if kwargs.get("cfg"):
|
|
|
|
LOGGER.info(f"cfg file passed. Overriding default params with {kwargs['cfg']}.")
|
|
|
|
overrides = yaml_load(check_yaml(kwargs["cfg"]))
|
|
|
|
overrides["task"] = self.task
|
|
|
|
overrides["mode"] = "train"
|
|
|
|
if not overrides.get("data"):
|
|
|
|
raise Exception("dataset not provided! Please check if you have defined `data` in you configs")
|
|
|
|
|
|
|
|
self.trainer = self.TrainerClass(overrides=overrides)
|
|
|
|
# load pre-trained weights if found, else use the loaded model
|
|
|
|
self.trainer.model = self.trainer.load_model(weights=self.ckpt) if self.ckpt else self.model
|
|
|
|
self.trainer.train()
|
|
|
|
|
|
|
|
def resume(self, task, model=None):
|
|
|
|
"""
|
|
|
|
Resume a training task.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
task (str): The task type you want to resume. Automatically finds the last run to resume if `model` is not specified.
|
|
|
|
model (str): [Optional] The model checkpoint to resume from. If not found, the last run of the given task type is resumed.
|
|
|
|
"""
|
|
|
|
if task.lower() not in MODEL_MAP:
|
|
|
|
raise Exception(f"unrecognised task - {task}. Supported tasks are {MODEL_MAP.keys()}")
|
|
|
|
_, trainer_class_literal = MODEL_MAP[task.lower()]
|
|
|
|
self.TrainerClass = eval(trainer_class_literal.replace("TYPE", f"v{self.type}"))
|
|
|
|
self.trainer = self.TrainerClass(overrides={"task": task.lower(), "resume": model if model else True})
|
|
|
|
self.trainer.train()
|
|
|
|
|
|
|
|
def _guess_model_trainer_and_task(self, head):
|
|
|
|
task = None
|
|
|
|
if head.lower() in ["classify", "classifier", "cls", "fc"]:
|
|
|
|
task = "classify"
|
|
|
|
if head.lower() in ["detect"]:
|
|
|
|
task = "detect"
|
|
|
|
if head.lower() in ["segment"]:
|
|
|
|
task = "segment"
|
|
|
|
model_class, trainer_class = MODEL_MAP[task]
|
|
|
|
# warning: eval is unsafe. Use with caution
|
|
|
|
trainer_class = eval(trainer_class.replace("TYPE", f"{self.type}"))
|
|
|
|
|
|
|
|
return model_class, trainer_class, task
|
|
|
|
|
|
|
|
def __call__(self, imgs):
|
|
|
|
if not self.model:
|
|
|
|
LOGGER.info("model not initialized!")
|
|
|
|
return self.model(imgs)
|