|
|
|
import hydra
|
|
|
|
import torch
|
|
|
|
|
|
|
|
from ultralytics.nn.tasks import ClassificationModel, get_model
|
|
|
|
from ultralytics.yolo import v8
|
|
|
|
from ultralytics.yolo.data import build_classification_dataloader
|
|
|
|
from ultralytics.yolo.engine.trainer import BaseTrainer
|
|
|
|
from ultralytics.yolo.utils import DEFAULT_CONFIG
|
|
|
|
|
|
|
|
|
|
|
|
class ClassificationTrainer(BaseTrainer):
|
|
|
|
|
|
|
|
def set_model_attributes(self):
|
|
|
|
self.model.names = self.data["names"]
|
|
|
|
|
|
|
|
def load_model(self, model_cfg=None, weights=None, verbose=True):
|
|
|
|
# TODO: why treat clf models as unique. We should have clf yamls? YES WE SHOULD!
|
|
|
|
if isinstance(weights, dict): # yolo ckpt
|
|
|
|
weights = weights["model"]
|
|
|
|
if weights and not weights.__class__.__name__.startswith("yolo"): # torchvision
|
|
|
|
model = weights
|
|
|
|
else:
|
|
|
|
model = ClassificationModel(model_cfg, weights, self.data["nc"])
|
|
|
|
ClassificationModel.reshape_outputs(model, self.data["nc"])
|
|
|
|
for m in model.modules():
|
|
|
|
if not weights and hasattr(m, 'reset_parameters'):
|
|
|
|
m.reset_parameters()
|
|
|
|
if isinstance(m, torch.nn.Dropout) and self.args.dropout is not None:
|
|
|
|
m.p = self.args.dropout # set dropout
|
|
|
|
for p in model.parameters():
|
|
|
|
p.requires_grad = True # for training
|
|
|
|
return model
|
|
|
|
|
|
|
|
def load_ckpt(self, ckpt):
|
|
|
|
return get_model(ckpt)
|
|
|
|
|
|
|
|
def get_dataloader(self, dataset_path, batch_size, rank=0, mode="train"):
|
|
|
|
return build_classification_dataloader(path=dataset_path,
|
|
|
|
imgsz=self.args.imgsz,
|
|
|
|
batch_size=batch_size,
|
|
|
|
rank=rank)
|
|
|
|
|
|
|
|
def preprocess_batch(self, batch):
|
|
|
|
batch["img"] = batch["img"].to(self.device)
|
|
|
|
batch["cls"] = batch["cls"].to(self.device)
|
|
|
|
return batch
|
|
|
|
|
|
|
|
def get_validator(self):
|
|
|
|
return v8.classify.ClassificationValidator(self.test_loader, self.save_dir, logger=self.console)
|
|
|
|
|
|
|
|
def criterion(self, preds, batch):
|
|
|
|
loss = torch.nn.functional.cross_entropy(preds, batch["cls"])
|
|
|
|
return loss, loss
|
|
|
|
|
|
|
|
def check_resume(self):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def resume_training(self, ckpt):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def final_eval(self):
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
|
|
@hydra.main(version_base=None, config_path=str(DEFAULT_CONFIG.parent), config_name=DEFAULT_CONFIG.name)
|
|
|
|
def train(cfg):
|
|
|
|
cfg.model = cfg.model or "resnet18"
|
|
|
|
cfg.data = cfg.data or "imagenette160" # or yolo.ClassificationDataset("mnist")
|
|
|
|
trainer = ClassificationTrainer(cfg)
|
|
|
|
trainer.train()
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
"""
|
|
|
|
CLI usage:
|
|
|
|
python ultralytics/yolo/v8/classify/train.py model=resnet18 data=imagenette160 epochs=1 imgsz=224
|
|
|
|
|
|
|
|
TODO:
|
|
|
|
Direct cli support, i.e, yolov8 classify_train args.epochs 10
|
|
|
|
"""
|
|
|
|
train()
|