|
|
|
import os
|
|
|
|
import random
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
|
|
from torch.utils.data import DataLoader, dataloader, distributed
|
|
|
|
|
|
|
|
from ..utils import LOGGER, colorstr
|
|
|
|
from ..utils.torch_utils import torch_distributed_zero_first
|
|
|
|
from .dataset import ClassificationDataset, YOLODataset
|
|
|
|
from .utils import PIN_MEMORY, RANK
|
|
|
|
|
|
|
|
|
|
|
|
class InfiniteDataLoader(dataloader.DataLoader):
|
|
|
|
"""Dataloader that reuses workers
|
|
|
|
|
|
|
|
Uses same syntax as vanilla DataLoader
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
|
|
super().__init__(*args, **kwargs)
|
|
|
|
object.__setattr__(self, "batch_sampler", _RepeatSampler(self.batch_sampler))
|
|
|
|
self.iterator = super().__iter__()
|
|
|
|
|
|
|
|
def __len__(self):
|
|
|
|
return len(self.batch_sampler.sampler)
|
|
|
|
|
|
|
|
def __iter__(self):
|
|
|
|
for _ in range(len(self)):
|
|
|
|
yield next(self.iterator)
|
|
|
|
|
|
|
|
|
|
|
|
class _RepeatSampler:
|
|
|
|
"""Sampler that repeats forever
|
|
|
|
|
|
|
|
Args:
|
|
|
|
sampler (Sampler)
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, sampler):
|
|
|
|
self.sampler = sampler
|
|
|
|
|
|
|
|
def __iter__(self):
|
|
|
|
while True:
|
|
|
|
yield from iter(self.sampler)
|
|
|
|
|
|
|
|
|
|
|
|
def seed_worker(worker_id):
|
|
|
|
# Set dataloader worker seed https://pytorch.org/docs/stable/notes/randomness.html#dataloader
|
|
|
|
worker_seed = torch.initial_seed() % 2 ** 32
|
|
|
|
np.random.seed(worker_seed)
|
|
|
|
random.seed(worker_seed)
|
|
|
|
|
|
|
|
|
|
|
|
def build_dataloader(cfg, batch_size, img_path, stride=32, label_path=None, rank=-1, mode="train"):
|
|
|
|
assert mode in ["train", "val"]
|
|
|
|
shuffle = mode == "train"
|
|
|
|
if cfg.rect and shuffle:
|
|
|
|
LOGGER.warning("WARNING ⚠️ --rect is incompatible with DataLoader shuffle, setting shuffle=False")
|
|
|
|
shuffle = False
|
|
|
|
with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP
|
|
|
|
dataset = YOLODataset(
|
|
|
|
img_path=img_path,
|
|
|
|
label_path=label_path,
|
|
|
|
imgsz=cfg.imgsz,
|
|
|
|
batch_size=batch_size,
|
|
|
|
augment=True if mode == "train" else False, # augmentation
|
|
|
|
hyp=cfg, # TODO: probably add a get_hyps_from_cfg function
|
|
|
|
rect=cfg.rect if mode == "train" else True, # rectangular batches
|
|
|
|
cache=None if cfg.noval else cfg.get("cache", None),
|
|
|
|
single_cls=cfg.get("single_cls", False),
|
|
|
|
stride=int(stride),
|
|
|
|
pad=0.0 if mode == "train" else 0.5,
|
|
|
|
prefix=colorstr(f"{mode}: "),
|
|
|
|
use_segments=cfg.task == "segment",
|
|
|
|
use_keypoints=cfg.task == "keypoint",
|
|
|
|
)
|
|
|
|
|
|
|
|
batch_size = min(batch_size, len(dataset))
|
|
|
|
nd = torch.cuda.device_count() # number of CUDA devices
|
|
|
|
workers = cfg.workers if mode == "train" else cfg.workers * 2
|
|
|
|
nw = min([os.cpu_count() // max(nd, 1), batch_size if batch_size > 1 else 0, workers]) # number of workers
|
|
|
|
sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle)
|
|
|
|
loader = DataLoader if cfg.image_weights else InfiniteDataLoader # only DataLoader allows for attribute updates
|
|
|
|
generator = torch.Generator()
|
|
|
|
generator.manual_seed(6148914691236517205 + RANK)
|
|
|
|
return (
|
|
|
|
loader(
|
|
|
|
dataset=dataset,
|
|
|
|
batch_size=batch_size,
|
|
|
|
shuffle=shuffle and sampler is None,
|
|
|
|
num_workers=nw,
|
|
|
|
sampler=sampler,
|
|
|
|
pin_memory=PIN_MEMORY,
|
|
|
|
collate_fn=getattr(dataset, "collate_fn", None),
|
|
|
|
worker_init_fn=seed_worker,
|
|
|
|
generator=generator,
|
|
|
|
),
|
|
|
|
dataset,
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
# build classification
|
|
|
|
# TODO: using cfg like `build_dataloader`
|
|
|
|
def build_classification_dataloader(path,
|
|
|
|
imgsz=224,
|
|
|
|
batch_size=16,
|
|
|
|
augment=True,
|
|
|
|
cache=False,
|
|
|
|
rank=-1,
|
|
|
|
workers=8,
|
|
|
|
shuffle=True):
|
|
|
|
# Returns Dataloader object to be used with YOLOv5 Classifier
|
|
|
|
with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP
|
|
|
|
dataset = ClassificationDataset(root=path, imgsz=imgsz, augment=augment, cache=cache)
|
|
|
|
batch_size = min(batch_size, len(dataset))
|
|
|
|
nd = torch.cuda.device_count()
|
|
|
|
nw = min([os.cpu_count() // max(nd, 1), batch_size if batch_size > 1 else 0, workers])
|
|
|
|
sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle)
|
|
|
|
generator = torch.Generator()
|
|
|
|
generator.manual_seed(6148914691236517205 + RANK)
|
|
|
|
return InfiniteDataLoader(dataset,
|
|
|
|
batch_size=batch_size,
|
|
|
|
shuffle=shuffle and sampler is None,
|
|
|
|
num_workers=nw,
|
|
|
|
sampler=sampler,
|
|
|
|
pin_memory=PIN_MEMORY,
|
|
|
|
worker_init_fn=seed_worker,
|
|
|
|
generator=generator) # or DataLoader(persistent_workers=True)
|