You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

107 lines
3.3 KiB

import logging
import torch
from tqdm import tqdm
from ultralytics.yolo.utils.ops import Profile
from ultralytics.yolo.utils.torch_utils import select_device
class BaseValidator:
"""
Base validator class.
"""
def __init__(self, dataloader, device='', half=False, pbar=None, logger=None):
self.dataloader = dataloader
self.half = half
self.device = select_device(device, dataloader.batch_size)
self.pbar = pbar
self.logger = logger or logging.getLogger()
def __call__(self, trainer=None, model=None):
"""
Supports validation of a pre-trained model if passed or a model being trained
if trainer is passed (trainer gets priority).
"""
training = trainer is not None
# trainer = trainer or self.trainer_class.get_trainer()
assert training or model is not None, "Either trainer or model is needed for validation"
if training:
model = trainer.model
self.half &= self.device.type != 'cpu'
model = model.half() if self.half else model
else: # TODO: handle this when detectMultiBackend is supported
# model = DetectMultiBacked(model)
pass
model.eval()
dt = Profile(), Profile(), Profile(), Profile()
loss = 0
n_batches = len(self.dataloader)
desc = self.set_desc()
bar = tqdm(self.dataloader, desc, n_batches, not training, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}')
self.init_metrics()
with torch.cuda.amp.autocast(enabled=self.device.type != 'cpu'):
for images, labels in bar:
# pre-process
with dt[0]:
images, labels = self.preprocess_batch(images, labels)
# inference
with dt[1]:
preds = model(images)
# TODO: remember to add native augmentation support when implementing model, like:
# preds, train_out = model(im, augment=augment)
# loss
with dt[2]:
if training:
loss += trainer.criterion(preds, labels) / images.shape[0]
# pre-process predictions
with dt[3]:
preds = self.preprocess_preds(preds)
self.update_metrics(preds, labels)
stats = self.get_stats()
self.check_stats(stats)
self.print_results()
# print speeds
if not training:
t = tuple(x.t / len(self.dataloader.dataset.samples) * 1E3 for x in dt) # speeds per image
# shape = (self.dataloader.batch_size, 3, imgsz, imgsz)
self.logger.info(
'Speed: %.1fms pre-process, %.1fms inference, %.1fms loss, %.1fms post-process per image at shape ' % t)
# TODO: implement save json
return stats
def preprocess_batch(self, images, labels):
return images.to(self.device, non_blocking=True), labels.to(self.device)
def preprocess_preds(self, preds):
return preds
def init_metrics(self):
pass
def update_metrics(self, preds, targets):
pass
def get_stats(self):
pass
def check_stats(self, stats):
pass
def print_results(self):
pass
def set_desc(self):
pass