|
|
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
|
|
|
|
|
|
from ultralytics.yolo.engine.predictor import BasePredictor
|
|
|
|
from ultralytics.yolo.engine.results import Results
|
|
|
|
from ultralytics.yolo.utils.torch_utils import select_device
|
|
|
|
|
|
|
|
from .modules.mask_generator import SamAutomaticMaskGenerator
|
|
|
|
|
|
|
|
|
|
|
|
class Predictor(BasePredictor):
|
|
|
|
|
|
|
|
def preprocess(self, im):
|
|
|
|
"""Prepares input image for inference."""
|
|
|
|
# TODO: Only support bs=1 for now
|
|
|
|
# im = ResizeLongestSide(1024).apply_image(im[0])
|
|
|
|
# im = torch.as_tensor(im, device=self.device)
|
|
|
|
# im = im.permute(2, 0, 1).contiguous()[None, :, :, :]
|
|
|
|
return im[0]
|
|
|
|
|
|
|
|
def setup_model(self, model):
|
|
|
|
"""Set up YOLO model with specified thresholds and device."""
|
|
|
|
device = select_device(self.args.device)
|
|
|
|
model.eval()
|
|
|
|
self.model = SamAutomaticMaskGenerator(model.to(device),
|
|
|
|
pred_iou_thresh=self.args.conf,
|
|
|
|
box_nms_thresh=self.args.iou)
|
|
|
|
self.device = device
|
|
|
|
# TODO: Temporary settings for compatibility
|
|
|
|
self.model.pt = False
|
|
|
|
self.model.triton = False
|
|
|
|
self.model.stride = 32
|
|
|
|
self.model.fp16 = False
|
|
|
|
self.done_warmup = True
|
|
|
|
|
|
|
|
def postprocess(self, preds, path, orig_imgs):
|
|
|
|
"""Postprocesses inference output predictions to create detection masks for objects."""
|
|
|
|
names = dict(enumerate(list(range(len(preds)))))
|
|
|
|
results = []
|
|
|
|
# TODO
|
|
|
|
for i, pred in enumerate([preds]):
|
|
|
|
masks = torch.from_numpy(np.stack([p['segmentation'] for p in pred], axis=0))
|
|
|
|
orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs
|
|
|
|
path = self.batch[0]
|
|
|
|
img_path = path[i] if isinstance(path, list) else path
|
|
|
|
results.append(Results(orig_img=orig_img, path=img_path, names=names, masks=masks))
|
|
|
|
return results
|
|
|
|
|
|
|
|
# def __call__(self, source=None, model=None, stream=False):
|
|
|
|
# frame = cv2.imread(source)
|
|
|
|
# preds = self.model.generate(frame)
|
|
|
|
# return self.postprocess(preds, source, frame)
|