|
|
|
# Ultralytics YOLO 🚀, GPL-3.0 license
|
|
|
|
|
|
|
|
from collections import deque
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
from ..utils import matching
|
|
|
|
from ..utils.gmc import GMC
|
|
|
|
from ..utils.kalman_filter import KalmanFilterXYWH
|
|
|
|
from .basetrack import TrackState
|
|
|
|
from .byte_tracker import BYTETracker, STrack
|
|
|
|
|
|
|
|
|
|
|
|
class BOTrack(STrack):
|
|
|
|
shared_kalman = KalmanFilterXYWH()
|
|
|
|
|
|
|
|
def __init__(self, tlwh, score, cls, feat=None, feat_history=50):
|
|
|
|
super().__init__(tlwh, score, cls)
|
|
|
|
|
|
|
|
self.smooth_feat = None
|
|
|
|
self.curr_feat = None
|
|
|
|
if feat is not None:
|
|
|
|
self.update_features(feat)
|
|
|
|
self.features = deque([], maxlen=feat_history)
|
|
|
|
self.alpha = 0.9
|
|
|
|
|
|
|
|
def update_features(self, feat):
|
|
|
|
feat /= np.linalg.norm(feat)
|
|
|
|
self.curr_feat = feat
|
|
|
|
if self.smooth_feat is None:
|
|
|
|
self.smooth_feat = feat
|
|
|
|
else:
|
|
|
|
self.smooth_feat = self.alpha * self.smooth_feat + (1 - self.alpha) * feat
|
|
|
|
self.features.append(feat)
|
|
|
|
self.smooth_feat /= np.linalg.norm(self.smooth_feat)
|
|
|
|
|
|
|
|
def predict(self):
|
|
|
|
mean_state = self.mean.copy()
|
|
|
|
if self.state != TrackState.Tracked:
|
|
|
|
mean_state[6] = 0
|
|
|
|
mean_state[7] = 0
|
|
|
|
|
|
|
|
self.mean, self.covariance = self.kalman_filter.predict(mean_state, self.covariance)
|
|
|
|
|
|
|
|
def re_activate(self, new_track, frame_id, new_id=False):
|
|
|
|
if new_track.curr_feat is not None:
|
|
|
|
self.update_features(new_track.curr_feat)
|
|
|
|
super().re_activate(new_track, frame_id, new_id)
|
|
|
|
|
|
|
|
def update(self, new_track, frame_id):
|
|
|
|
if new_track.curr_feat is not None:
|
|
|
|
self.update_features(new_track.curr_feat)
|
|
|
|
super().update(new_track, frame_id)
|
|
|
|
|
|
|
|
@property
|
|
|
|
def tlwh(self):
|
|
|
|
"""Get current position in bounding box format `(top left x, top left y,
|
|
|
|
width, height)`.
|
|
|
|
"""
|
|
|
|
if self.mean is None:
|
|
|
|
return self._tlwh.copy()
|
|
|
|
ret = self.mean[:4].copy()
|
|
|
|
ret[:2] -= ret[2:] / 2
|
|
|
|
return ret
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def multi_predict(stracks):
|
|
|
|
if len(stracks) > 0:
|
|
|
|
multi_mean = np.asarray([st.mean.copy() for st in stracks])
|
|
|
|
multi_covariance = np.asarray([st.covariance for st in stracks])
|
|
|
|
for i, st in enumerate(stracks):
|
|
|
|
if st.state != TrackState.Tracked:
|
|
|
|
multi_mean[i][6] = 0
|
|
|
|
multi_mean[i][7] = 0
|
|
|
|
multi_mean, multi_covariance = BOTrack.shared_kalman.multi_predict(multi_mean, multi_covariance)
|
|
|
|
for i, (mean, cov) in enumerate(zip(multi_mean, multi_covariance)):
|
|
|
|
stracks[i].mean = mean
|
|
|
|
stracks[i].covariance = cov
|
|
|
|
|
|
|
|
def convert_coords(self, tlwh):
|
|
|
|
return self.tlwh_to_xywh(tlwh)
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def tlwh_to_xywh(tlwh):
|
|
|
|
"""Convert bounding box to format `(center x, center y, width,
|
|
|
|
height)`.
|
|
|
|
"""
|
|
|
|
ret = np.asarray(tlwh).copy()
|
|
|
|
ret[:2] += ret[2:] / 2
|
|
|
|
return ret
|
|
|
|
|
|
|
|
|
|
|
|
class BOTSORT(BYTETracker):
|
|
|
|
|
|
|
|
def __init__(self, args, frame_rate=30):
|
|
|
|
super().__init__(args, frame_rate)
|
|
|
|
# ReID module
|
|
|
|
self.proximity_thresh = args.proximity_thresh
|
|
|
|
self.appearance_thresh = args.appearance_thresh
|
|
|
|
|
|
|
|
if args.with_reid:
|
|
|
|
# haven't supported BoT-SORT(reid) yet
|
|
|
|
self.encoder = None
|
|
|
|
# self.gmc = GMC(method=args.cmc_method, verbose=[args.name, args.ablation])
|
|
|
|
self.gmc = GMC(method=args.cmc_method)
|
|
|
|
|
|
|
|
def get_kalmanfilter(self):
|
|
|
|
return KalmanFilterXYWH()
|
|
|
|
|
|
|
|
def init_track(self, dets, scores, cls, img=None):
|
|
|
|
if len(dets) == 0:
|
|
|
|
return []
|
|
|
|
if self.args.with_reid and self.encoder is not None:
|
|
|
|
features_keep = self.encoder.inference(img, dets)
|
|
|
|
detections = [BOTrack(xyxy, s, c, f) for (xyxy, s, c, f) in zip(dets, scores, cls, features_keep)]
|
|
|
|
else:
|
|
|
|
detections = [BOTrack(xyxy, s, c) for (xyxy, s, c) in zip(dets, scores, cls)]
|
|
|
|
return detections
|
|
|
|
|
|
|
|
def get_dists(self, tracks, detections):
|
|
|
|
dists = matching.iou_distance(tracks, detections)
|
|
|
|
dists_mask = (dists > self.proximity_thresh)
|
|
|
|
|
|
|
|
# TODO: mot20
|
|
|
|
# if not self.args.mot20:
|
|
|
|
dists = matching.fuse_score(dists, detections)
|
|
|
|
|
|
|
|
if self.args.with_reid and self.encoder is not None:
|
|
|
|
emb_dists = matching.embedding_distance(tracks, detections) / 2.0
|
|
|
|
emb_dists[emb_dists > self.appearance_thresh] = 1.0
|
|
|
|
emb_dists[dists_mask] = 1.0
|
|
|
|
dists = np.minimum(dists, emb_dists)
|
|
|
|
return dists
|
|
|
|
|
|
|
|
def multi_predict(self, tracks):
|
|
|
|
BOTrack.multi_predict(tracks)
|