|
|
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
|
|
|
|
|
|
import re
|
|
|
|
|
|
|
|
import matplotlib.image as mpimg
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
|
|
|
from ultralytics.utils import LOGGER, SETTINGS, TESTS_RUNNING
|
|
|
|
from ultralytics.utils.torch_utils import model_info_for_loggers
|
|
|
|
|
|
|
|
try:
|
|
|
|
import clearml
|
|
|
|
from clearml import Task
|
|
|
|
from clearml.binding.frameworks.pytorch_bind import PatchPyTorchModelIO
|
|
|
|
from clearml.binding.matplotlib_bind import PatchedMatplotlib
|
|
|
|
|
|
|
|
assert hasattr(clearml, '__version__') # verify package is not directory
|
|
|
|
assert not TESTS_RUNNING # do not log pytest
|
|
|
|
assert SETTINGS['clearml'] is True # verify integration is enabled
|
|
|
|
except (ImportError, AssertionError):
|
|
|
|
clearml = None
|
|
|
|
|
|
|
|
|
|
|
|
def _log_debug_samples(files, title='Debug Samples') -> None:
|
|
|
|
"""
|
|
|
|
Log files (images) as debug samples in the ClearML task.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
files (list): A list of file paths in PosixPath format.
|
|
|
|
title (str): A title that groups together images with the same values.
|
|
|
|
"""
|
|
|
|
task = Task.current_task()
|
|
|
|
if task:
|
|
|
|
for f in files:
|
|
|
|
if f.exists():
|
|
|
|
it = re.search(r'_batch(\d+)', f.name)
|
|
|
|
iteration = int(it.groups()[0]) if it else 0
|
|
|
|
task.get_logger().report_image(title=title,
|
|
|
|
series=f.name.replace(it.group(), ''),
|
|
|
|
local_path=str(f),
|
|
|
|
iteration=iteration)
|
|
|
|
|
|
|
|
|
|
|
|
def _log_plot(title, plot_path) -> None:
|
|
|
|
"""
|
|
|
|
Log an image as a plot in the plot section of ClearML.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
title (str): The title of the plot.
|
|
|
|
plot_path (str): The path to the saved image file.
|
|
|
|
"""
|
|
|
|
img = mpimg.imread(plot_path)
|
|
|
|
fig = plt.figure()
|
|
|
|
ax = fig.add_axes([0, 0, 1, 1], frameon=False, aspect='auto', xticks=[], yticks=[]) # no ticks
|
|
|
|
ax.imshow(img)
|
|
|
|
|
|
|
|
Task.current_task().get_logger().report_matplotlib_figure(title=title,
|
|
|
|
series='',
|
|
|
|
figure=fig,
|
|
|
|
report_interactive=False)
|
|
|
|
|
|
|
|
|
|
|
|
def on_pretrain_routine_start(trainer):
|
|
|
|
"""Runs at start of pretraining routine; initializes and connects/ logs task to ClearML."""
|
|
|
|
try:
|
|
|
|
task = Task.current_task()
|
|
|
|
if task:
|
|
|
|
# Make sure the automatic pytorch and matplotlib bindings are disabled!
|
|
|
|
# We are logging these plots and model files manually in the integration
|
|
|
|
PatchPyTorchModelIO.update_current_task(None)
|
|
|
|
PatchedMatplotlib.update_current_task(None)
|
|
|
|
else:
|
|
|
|
task = Task.init(project_name=trainer.args.project or 'YOLOv8',
|
|
|
|
task_name=trainer.args.name,
|
|
|
|
tags=['YOLOv8'],
|
|
|
|
output_uri=True,
|
|
|
|
reuse_last_task_id=False,
|
|
|
|
auto_connect_frameworks={
|
|
|
|
'pytorch': False,
|
|
|
|
'matplotlib': False})
|
|
|
|
LOGGER.warning('ClearML Initialized a new task. If you want to run remotely, '
|
|
|
|
'please add clearml-init and connect your arguments before initializing YOLO.')
|
|
|
|
task.connect(vars(trainer.args), name='General')
|
|
|
|
except Exception as e:
|
|
|
|
LOGGER.warning(f'WARNING ⚠️ ClearML installed but not initialized correctly, not logging this run. {e}')
|
|
|
|
|
|
|
|
|
|
|
|
def on_train_epoch_end(trainer):
|
|
|
|
task = Task.current_task()
|
|
|
|
|
|
|
|
if task:
|
|
|
|
"""Logs debug samples for the first epoch of YOLO training."""
|
|
|
|
if trainer.epoch == 1:
|
|
|
|
_log_debug_samples(sorted(trainer.save_dir.glob('train_batch*.jpg')), 'Mosaic')
|
|
|
|
"""Report the current training progress."""
|
|
|
|
for k, v in trainer.validator.metrics.results_dict.items():
|
|
|
|
task.get_logger().report_scalar('train', k, v, iteration=trainer.epoch)
|
|
|
|
|
|
|
|
|
|
|
|
def on_fit_epoch_end(trainer):
|
|
|
|
"""Reports model information to logger at the end of an epoch."""
|
|
|
|
task = Task.current_task()
|
|
|
|
if task:
|
|
|
|
# You should have access to the validation bboxes under jdict
|
|
|
|
task.get_logger().report_scalar(title='Epoch Time',
|
|
|
|
series='Epoch Time',
|
|
|
|
value=trainer.epoch_time,
|
|
|
|
iteration=trainer.epoch)
|
|
|
|
if trainer.epoch == 0:
|
|
|
|
for k, v in model_info_for_loggers(trainer).items():
|
|
|
|
task.get_logger().report_single_value(k, v)
|
|
|
|
|
|
|
|
|
|
|
|
def on_val_end(validator):
|
|
|
|
"""Logs validation results including labels and predictions."""
|
|
|
|
if Task.current_task():
|
|
|
|
# Log val_labels and val_pred
|
|
|
|
_log_debug_samples(sorted(validator.save_dir.glob('val*.jpg')), 'Validation')
|
|
|
|
|
|
|
|
|
|
|
|
def on_train_end(trainer):
|
|
|
|
"""Logs final model and its name on training completion."""
|
|
|
|
task = Task.current_task()
|
|
|
|
if task:
|
|
|
|
# Log final results, CM matrix + PR plots
|
|
|
|
files = [
|
|
|
|
'results.png', 'confusion_matrix.png', 'confusion_matrix_normalized.png',
|
|
|
|
*(f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R'))]
|
|
|
|
files = [(trainer.save_dir / f) for f in files if (trainer.save_dir / f).exists()] # filter
|
|
|
|
for f in files:
|
|
|
|
_log_plot(title=f.stem, plot_path=f)
|
|
|
|
# Report final metrics
|
|
|
|
for k, v in trainer.validator.metrics.results_dict.items():
|
|
|
|
task.get_logger().report_single_value(k, v)
|
|
|
|
# Log the final model
|
|
|
|
task.update_output_model(model_path=str(trainer.best), model_name=trainer.args.name, auto_delete_file=False)
|
|
|
|
|
|
|
|
|
|
|
|
callbacks = {
|
|
|
|
'on_pretrain_routine_start': on_pretrain_routine_start,
|
|
|
|
'on_train_epoch_end': on_train_epoch_end,
|
|
|
|
'on_fit_epoch_end': on_fit_epoch_end,
|
|
|
|
'on_val_end': on_val_end,
|
|
|
|
'on_train_end': on_train_end} if clearml else {}
|