description: Learn about the supported models and architectures, such as YOLOv3, YOLOv5, and YOLOv8, and how to contribute your own model to Ultralytics.
Ultralytics supports many models and architectures with more to come in the future. Want to add your model architecture? [Here's](../help/contributing.md) how you can contribute.
In this documentation, we provide information on four major models:
1. [YOLOv3](./yolov3.md): The third iteration of the YOLO model family, known for its efficient real-time object detection capabilities.
2. [YOLOv5](./yolov5.md): An improved version of the YOLO architecture, offering better performance and speed tradeoffs compared to previous versions.
4. [YOLOv8](./yolov8.md): The latest version of the YOLO family, featuring enhanced capabilities such as instance segmentation, pose/keypoints estimation, and classification.
5. [Segment Anything Model (SAM)](./sam.md): Meta's Segment Anything Model (SAM).
You can use these models directly in the Command Line Interface (CLI) or in a Python environment. Below are examples of how to use the models with CLI and Python: