|
|
|
from ultralytics.yolo.utils.torch_utils import get_flops, get_num_params
|
|
|
|
|
|
|
|
try:
|
|
|
|
import wandb
|
|
|
|
|
|
|
|
assert hasattr(wandb, '__version__')
|
|
|
|
except (ImportError, AssertionError):
|
|
|
|
wandb = None
|
|
|
|
|
|
|
|
|
|
|
|
def on_pretrain_routine_start(trainer):
|
|
|
|
wandb.init(project=trainer.args.project if trainer.args.project != 'runs/train' else 'YOLOv8',
|
|
|
|
name=trainer.args.name,
|
|
|
|
config=dict(trainer.args)) if not wandb.run else wandb.run
|
|
|
|
|
|
|
|
|
|
|
|
def on_val_end(trainer):
|
|
|
|
wandb.run.log(trainer.metrics, step=trainer.epoch + 1)
|
|
|
|
if trainer.epoch == 0:
|
|
|
|
model_info = {
|
|
|
|
"model/parameters": get_num_params(trainer.model),
|
|
|
|
"model/GFLOPs": round(get_flops(trainer.model), 3),
|
|
|
|
"model/speed(ms)": round(trainer.validator.speed[1], 3)}
|
|
|
|
wandb.run.log(model_info, step=trainer.epoch + 1)
|
|
|
|
|
|
|
|
|
|
|
|
def on_train_epoch_end(trainer):
|
|
|
|
wandb.run.log(trainer.label_loss_items(trainer.tloss, prefix="train"), step=trainer.epoch + 1)
|
|
|
|
if trainer.epoch == 1:
|
|
|
|
wandb.run.log({f.stem: wandb.Image(str(f))
|
|
|
|
for f in trainer.save_dir.glob('train_batch*.jpg')},
|
|
|
|
step=trainer.epoch + 1)
|
|
|
|
|
|
|
|
|
|
|
|
def on_train_end(trainer):
|
|
|
|
art = wandb.Artifact(type="model", name=f"run_{wandb.run.id}_model")
|
|
|
|
if trainer.best.exists():
|
|
|
|
art.add_file(trainer.best)
|
|
|
|
wandb.run.log_artifact(art)
|
|
|
|
|
|
|
|
|
|
|
|
callbacks = {
|
|
|
|
"on_pretrain_routine_start": on_pretrain_routine_start,
|
|
|
|
"on_train_epoch_end": on_train_epoch_end,
|
|
|
|
"on_val_end": on_val_end,
|
|
|
|
"on_train_end": on_train_end} if wandb else {}
|