|
|
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
|
|
|
|
|
|
from copy import copy
|
|
|
|
|
|
|
|
from ultralytics.models import yolo
|
|
|
|
from ultralytics.nn.tasks import PoseModel
|
|
|
|
from ultralytics.utils import DEFAULT_CFG, LOGGER
|
|
|
|
from ultralytics.utils.plotting import plot_images, plot_results
|
|
|
|
|
|
|
|
|
|
|
|
# BaseTrainer python usage
|
|
|
|
class PoseTrainer(yolo.detect.DetectionTrainer):
|
|
|
|
|
|
|
|
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
|
|
|
|
"""Initialize a PoseTrainer object with specified configurations and overrides."""
|
|
|
|
if overrides is None:
|
|
|
|
overrides = {}
|
|
|
|
overrides['task'] = 'pose'
|
|
|
|
super().__init__(cfg, overrides, _callbacks)
|
|
|
|
|
|
|
|
if isinstance(self.args.device, str) and self.args.device.lower() == 'mps':
|
|
|
|
LOGGER.warning("WARNING ⚠️ Apple MPS known Pose bug. Recommend 'device=cpu' for Pose models. "
|
|
|
|
'See https://github.com/ultralytics/ultralytics/issues/4031.')
|
|
|
|
|
|
|
|
def get_model(self, cfg=None, weights=None, verbose=True):
|
|
|
|
"""Get pose estimation model with specified configuration and weights."""
|
|
|
|
model = PoseModel(cfg, ch=3, nc=self.data['nc'], data_kpt_shape=self.data['kpt_shape'], verbose=verbose)
|
|
|
|
if weights:
|
|
|
|
model.load(weights)
|
|
|
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
def set_model_attributes(self):
|
|
|
|
"""Sets keypoints shape attribute of PoseModel."""
|
|
|
|
super().set_model_attributes()
|
|
|
|
self.model.kpt_shape = self.data['kpt_shape']
|
|
|
|
|
|
|
|
def get_validator(self):
|
|
|
|
"""Returns an instance of the PoseValidator class for validation."""
|
|
|
|
self.loss_names = 'box_loss', 'pose_loss', 'kobj_loss', 'cls_loss', 'dfl_loss'
|
|
|
|
return yolo.pose.PoseValidator(self.test_loader, save_dir=self.save_dir, args=copy(self.args))
|
|
|
|
|
|
|
|
def plot_training_samples(self, batch, ni):
|
|
|
|
"""Plot a batch of training samples with annotated class labels, bounding boxes, and keypoints."""
|
|
|
|
images = batch['img']
|
|
|
|
kpts = batch['keypoints']
|
|
|
|
cls = batch['cls'].squeeze(-1)
|
|
|
|
bboxes = batch['bboxes']
|
|
|
|
paths = batch['im_file']
|
|
|
|
batch_idx = batch['batch_idx']
|
|
|
|
plot_images(images,
|
|
|
|
batch_idx,
|
|
|
|
cls,
|
|
|
|
bboxes,
|
|
|
|
kpts=kpts,
|
|
|
|
paths=paths,
|
|
|
|
fname=self.save_dir / f'train_batch{ni}.jpg',
|
|
|
|
on_plot=self.on_plot)
|
|
|
|
|
|
|
|
def plot_metrics(self):
|
|
|
|
"""Plots training/val metrics."""
|
|
|
|
plot_results(file=self.csv, pose=True, on_plot=self.on_plot) # save results.png
|
|
|
|
|
|
|
|
|
|
|
|
def train(cfg=DEFAULT_CFG, use_python=False):
|
|
|
|
"""Train the YOLO model on the given data and device."""
|
|
|
|
model = cfg.model or 'yolov8n-pose.yaml'
|
|
|
|
data = cfg.data or 'coco8-pose.yaml'
|
|
|
|
device = cfg.device if cfg.device is not None else ''
|
|
|
|
|
|
|
|
args = dict(model=model, data=data, device=device)
|
|
|
|
if use_python:
|
|
|
|
from ultralytics import YOLO
|
|
|
|
YOLO(model).train(**args)
|
|
|
|
else:
|
|
|
|
trainer = PoseTrainer(overrides=args)
|
|
|
|
trainer.train()
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
train()
|