|
|
|
# Ultralytics YOLO 🚀, GPL-3.0 license
|
|
|
|
import json
|
|
|
|
import signal
|
|
|
|
import sys
|
|
|
|
from pathlib import Path
|
|
|
|
from time import sleep, time
|
|
|
|
|
|
|
|
import requests
|
|
|
|
|
|
|
|
from ultralytics.hub.utils import HUB_API_ROOT, check_dataset_disk_space, smart_request
|
|
|
|
from ultralytics.yolo.utils import LOGGER, PREFIX, __version__, emojis, is_colab, threaded
|
|
|
|
from ultralytics.yolo.utils.torch_utils import get_flops, get_num_params
|
|
|
|
|
|
|
|
AGENT_NAME = f'python-{__version__}-colab' if is_colab() else f'python-{__version__}-local'
|
|
|
|
session = None
|
|
|
|
|
|
|
|
|
|
|
|
class HubTrainingSession:
|
|
|
|
|
|
|
|
def __init__(self, model_id, auth):
|
|
|
|
self.agent_id = None # identifies which instance is communicating with server
|
|
|
|
self.model_id = model_id
|
|
|
|
self.api_url = f'{HUB_API_ROOT}/v1/models/{model_id}'
|
|
|
|
self.auth_header = auth.get_auth_header()
|
|
|
|
self._rate_limits = {'metrics': 3.0, 'ckpt': 900.0, 'heartbeat': 300.0} # rate limits (seconds)
|
|
|
|
self._timers = {} # rate limit timers (seconds)
|
|
|
|
self._metrics_queue = {} # metrics queue
|
|
|
|
self.model = self._get_model()
|
|
|
|
self.alive = True
|
|
|
|
self._start_heartbeat() # start heartbeats
|
|
|
|
self._register_signal_handlers()
|
|
|
|
|
|
|
|
def _register_signal_handlers(self):
|
|
|
|
signal.signal(signal.SIGTERM, self._handle_signal)
|
|
|
|
signal.signal(signal.SIGINT, self._handle_signal)
|
|
|
|
|
|
|
|
def _handle_signal(self, signum, frame):
|
|
|
|
"""
|
|
|
|
Prevent heartbeats from being sent on Colab after kill.
|
|
|
|
This method does not use frame, it is included as it is
|
|
|
|
passed by signal.
|
|
|
|
"""
|
|
|
|
if self.alive is True:
|
|
|
|
LOGGER.info(f'{PREFIX}Kill signal received! ❌')
|
|
|
|
self._stop_heartbeat()
|
|
|
|
sys.exit(signum)
|
|
|
|
|
|
|
|
def _stop_heartbeat(self):
|
|
|
|
"""End the heartbeat loop"""
|
|
|
|
self.alive = False
|
|
|
|
|
|
|
|
def upload_metrics(self):
|
|
|
|
payload = {'metrics': self._metrics_queue.copy(), 'type': 'metrics'}
|
|
|
|
smart_request(f'{self.api_url}', json=payload, headers=self.auth_header, code=2)
|
|
|
|
|
|
|
|
def _get_model(self):
|
|
|
|
# Returns model from database by id
|
|
|
|
api_url = f'{HUB_API_ROOT}/v1/models/{self.model_id}'
|
|
|
|
headers = self.auth_header
|
|
|
|
|
|
|
|
try:
|
|
|
|
response = smart_request(api_url, method='get', headers=headers, thread=False, code=0)
|
|
|
|
data = response.json().get('data', None)
|
|
|
|
|
|
|
|
if data.get('status', None) == 'trained':
|
|
|
|
raise ValueError(
|
|
|
|
emojis(f'Model is already trained and uploaded to '
|
|
|
|
f'https://hub.ultralytics.com/models/{self.model_id} 🚀'))
|
|
|
|
|
|
|
|
if not data.get('data', None):
|
|
|
|
raise ValueError('Dataset may still be processing. Please wait a minute and try again.') # RF fix
|
|
|
|
self.model_id = data['id']
|
|
|
|
|
|
|
|
# TODO: restore when server keys when dataset URL and GPU train is working
|
|
|
|
|
|
|
|
self.train_args = {
|
|
|
|
'batch': data['batch_size'],
|
|
|
|
'epochs': data['epochs'],
|
|
|
|
'imgsz': data['imgsz'],
|
|
|
|
'patience': data['patience'],
|
|
|
|
'device': data['device'],
|
|
|
|
'cache': data['cache'],
|
|
|
|
'data': data['data']}
|
|
|
|
|
|
|
|
self.input_file = data.get('cfg', data['weights'])
|
|
|
|
|
|
|
|
# hack for yolov5 cfg adds u
|
|
|
|
if 'cfg' in data and 'yolov5' in data['cfg']:
|
|
|
|
self.input_file = data['cfg'].replace('.yaml', 'u.yaml')
|
|
|
|
|
|
|
|
return data
|
|
|
|
except requests.exceptions.ConnectionError as e:
|
|
|
|
raise ConnectionRefusedError('ERROR: The HUB server is not online. Please try again later.') from e
|
|
|
|
except Exception:
|
|
|
|
raise
|
|
|
|
|
|
|
|
def check_disk_space(self):
|
|
|
|
if not check_dataset_disk_space(self.model['data']):
|
|
|
|
raise MemoryError('Not enough disk space')
|
|
|
|
|
|
|
|
def register_callbacks(self, trainer):
|
|
|
|
trainer.add_callback('on_pretrain_routine_end', self.on_pretrain_routine_end)
|
|
|
|
trainer.add_callback('on_fit_epoch_end', self.on_fit_epoch_end)
|
|
|
|
trainer.add_callback('on_model_save', self.on_model_save)
|
|
|
|
trainer.add_callback('on_train_end', self.on_train_end)
|
|
|
|
|
|
|
|
def on_pretrain_routine_end(self, trainer):
|
|
|
|
"""
|
|
|
|
Start timer for upload rate limit.
|
|
|
|
This method does not use trainer. It is passed to all callbacks by default.
|
|
|
|
"""
|
|
|
|
# Start timer for upload rate limit
|
|
|
|
LOGGER.info(f'{PREFIX}View model at https://hub.ultralytics.com/models/{self.model_id} 🚀')
|
|
|
|
self._timers = {'metrics': time(), 'ckpt': time()} # start timer on self.rate_limit
|
|
|
|
|
|
|
|
def on_fit_epoch_end(self, trainer):
|
|
|
|
# Upload metrics after val end
|
|
|
|
all_plots = {**trainer.label_loss_items(trainer.tloss, prefix='train'), **trainer.metrics}
|
|
|
|
|
|
|
|
if trainer.epoch == 0:
|
|
|
|
model_info = {
|
|
|
|
'model/parameters': get_num_params(trainer.model),
|
|
|
|
'model/GFLOPs': round(get_flops(trainer.model), 3),
|
|
|
|
'model/speed(ms)': round(trainer.validator.speed['inference'], 3)}
|
|
|
|
all_plots = {**all_plots, **model_info}
|
|
|
|
self._metrics_queue[trainer.epoch] = json.dumps(all_plots)
|
|
|
|
if time() - self._timers['metrics'] > self._rate_limits['metrics']:
|
|
|
|
self.upload_metrics()
|
|
|
|
self._timers['metrics'] = time() # reset timer
|
|
|
|
self._metrics_queue = {} # reset queue
|
|
|
|
|
|
|
|
def on_model_save(self, trainer):
|
|
|
|
# Upload checkpoints with rate limiting
|
|
|
|
is_best = trainer.best_fitness == trainer.fitness
|
|
|
|
if time() - self._timers['ckpt'] > self._rate_limits['ckpt']:
|
|
|
|
LOGGER.info(f'{PREFIX}Uploading checkpoint {self.model_id}')
|
|
|
|
self._upload_model(trainer.epoch, trainer.last, is_best)
|
|
|
|
self._timers['ckpt'] = time() # reset timer
|
|
|
|
|
|
|
|
def on_train_end(self, trainer):
|
|
|
|
# Upload final model and metrics with exponential standoff
|
|
|
|
LOGGER.info(f'{PREFIX}Training completed successfully ✅\n'
|
|
|
|
f'{PREFIX}Uploading final {self.model_id}')
|
|
|
|
|
|
|
|
self._upload_model(trainer.epoch, trainer.best, map=trainer.metrics.get('metrics/mAP50-95(B)', 0), final=True)
|
|
|
|
self.alive = False # stop heartbeats
|
|
|
|
LOGGER.info(f'{PREFIX}View model at https://hub.ultralytics.com/models/{self.model_id} 🚀')
|
|
|
|
|
|
|
|
def _upload_model(self, epoch, weights, is_best=False, map=0.0, final=False):
|
|
|
|
# Upload a model to HUB
|
|
|
|
if Path(weights).is_file():
|
|
|
|
with open(weights, 'rb') as f:
|
|
|
|
file = f.read()
|
|
|
|
else:
|
|
|
|
LOGGER.warning(f'{PREFIX}WARNING ⚠️ Model upload failed. Missing model {weights}.')
|
|
|
|
file = None
|
|
|
|
data = {'epoch': epoch}
|
|
|
|
if final:
|
|
|
|
data.update({'type': 'final', 'map': map})
|
|
|
|
else:
|
|
|
|
data.update({'type': 'epoch', 'isBest': bool(is_best)})
|
|
|
|
|
|
|
|
smart_request(f'{self.api_url}/upload',
|
|
|
|
data=data,
|
|
|
|
files={'best.pt' if final else 'last.pt': file},
|
|
|
|
headers=self.auth_header,
|
|
|
|
retry=10 if final else None,
|
|
|
|
timeout=3600 if final else None,
|
|
|
|
code=4 if final else 3)
|
|
|
|
|
|
|
|
@threaded
|
|
|
|
def _start_heartbeat(self):
|
|
|
|
while self.alive:
|
|
|
|
r = smart_request(f'{HUB_API_ROOT}/v1/agent/heartbeat/models/{self.model_id}',
|
|
|
|
json={
|
|
|
|
'agent': AGENT_NAME,
|
|
|
|
'agentId': self.agent_id},
|
|
|
|
headers=self.auth_header,
|
|
|
|
retry=0,
|
|
|
|
code=5,
|
|
|
|
thread=False)
|
|
|
|
self.agent_id = r.json().get('data', {}).get('agentId', None)
|
|
|
|
sleep(self._rate_limits['heartbeat'])
|