|
|
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
|
|
|
|
|
|
import subprocess
|
|
|
|
from pathlib import Path
|
|
|
|
|
|
|
|
import pytest
|
|
|
|
|
|
|
|
from ultralytics.utils import ONLINE, ROOT, SETTINGS
|
|
|
|
|
|
|
|
WEIGHT_DIR = Path(SETTINGS['weights_dir'])
|
|
|
|
TASK_ARGS = [
|
|
|
|
('detect', 'yolov8n', 'coco8.yaml'),
|
|
|
|
('segment', 'yolov8n-seg', 'coco8-seg.yaml'),
|
|
|
|
('classify', 'yolov8n-cls', 'imagenet10'),
|
|
|
|
('pose', 'yolov8n-pose', 'coco8-pose.yaml'), ] # (task, model, data)
|
|
|
|
EXPORT_ARGS = [
|
|
|
|
('yolov8n', 'torchscript'),
|
|
|
|
('yolov8n-seg', 'torchscript'),
|
|
|
|
('yolov8n-cls', 'torchscript'),
|
|
|
|
('yolov8n-pose', 'torchscript'), ] # (model, format)
|
|
|
|
|
|
|
|
|
|
|
|
def run(cmd):
|
|
|
|
# Run a subprocess command with check=True
|
|
|
|
subprocess.run(cmd.split(), check=True)
|
|
|
|
|
|
|
|
|
|
|
|
def test_special_modes():
|
|
|
|
run('yolo help')
|
|
|
|
run('yolo checks')
|
|
|
|
run('yolo version')
|
|
|
|
run('yolo settings reset')
|
|
|
|
run('yolo copy-cfg')
|
|
|
|
run('yolo cfg')
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize('task,model,data', TASK_ARGS)
|
|
|
|
def test_train(task, model, data):
|
|
|
|
run(f'yolo train {task} model={model}.yaml data={data} imgsz=32 epochs=1 cache=disk')
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize('task,model,data', TASK_ARGS)
|
|
|
|
def test_val(task, model, data):
|
|
|
|
run(f'yolo val {task} model={WEIGHT_DIR / model}.pt data={data} imgsz=32')
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize('task,model,data', TASK_ARGS)
|
|
|
|
def test_predict(task, model, data):
|
|
|
|
run(f"yolo predict model={WEIGHT_DIR / model}.pt source={ROOT / 'assets'} imgsz=32 save save_crop save_txt")
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skipif(not ONLINE, reason='environment is offline')
|
|
|
|
@pytest.mark.parametrize('task,model,data', TASK_ARGS)
|
|
|
|
def test_predict_online(task, model, data):
|
|
|
|
mode = 'track' if task in ('detect', 'segment', 'pose') else 'predict' # mode for video inference
|
|
|
|
run(f'yolo predict model={WEIGHT_DIR / model}.pt source=https://ultralytics.com/images/bus.jpg imgsz=32')
|
|
|
|
run(f'yolo {mode} model={WEIGHT_DIR / model}.pt source=https://ultralytics.com/assets/decelera_landscape_min.mov imgsz=32'
|
|
|
|
)
|
|
|
|
|
|
|
|
# Run Python YouTube tracking because CLI is broken. TODO: fix CLI YouTube
|
|
|
|
# run(f'yolo {mode} model={model}.pt source=https://youtu.be/G17sBkb38XQ imgsz=32 tracker=bytetrack.yaml')
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize('model,format', EXPORT_ARGS)
|
|
|
|
def test_export(model, format):
|
|
|
|
run(f'yolo export model={WEIGHT_DIR / model}.pt format={format} imgsz=32')
|
|
|
|
|
|
|
|
|
|
|
|
# Test SAM, RTDETR Models
|
|
|
|
def test_rtdetr(task='detect', model='yolov8n-rtdetr.yaml', data='coco8.yaml'):
|
|
|
|
# Warning: MUST use imgsz=640
|
|
|
|
run(f'yolo train {task} model={model} data={data} imgsz=640 epochs=1 cache=disk')
|
|
|
|
run(f'yolo val {task} model={model} data={data} imgsz=640')
|
|
|
|
run(f"yolo predict {task} model={model} source={ROOT / 'assets/bus.jpg'} imgsz=640 save save_crop save_txt")
|
|
|
|
|
|
|
|
|
|
|
|
def test_fastsam(task='segment', model='FastSAM-s.pt', data='coco8-seg.yaml'):
|
|
|
|
source = ROOT / 'assets/bus.jpg'
|
|
|
|
|
|
|
|
run(f'yolo segment val {task} model={model} data={data} imgsz=32')
|
|
|
|
run(f'yolo segment predict model={model} source={source} imgsz=32 save save_crop save_txt')
|
|
|
|
|
|
|
|
from ultralytics import FastSAM
|
|
|
|
from ultralytics.models.fastsam import FastSAMPrompt
|
|
|
|
|
|
|
|
# Create a FastSAM model
|
|
|
|
model = FastSAM('FastSAM-s.pt') # or FastSAM-x.pt
|
|
|
|
|
|
|
|
# Run inference on an image
|
|
|
|
everything_results = model(source, device='cpu', retina_masks=True, imgsz=1024, conf=0.4, iou=0.9)
|
|
|
|
|
|
|
|
# Everything prompt
|
|
|
|
prompt_process = FastSAMPrompt(source, everything_results, device='cpu')
|
|
|
|
ann = prompt_process.everything_prompt()
|
|
|
|
|
|
|
|
# Bbox default shape [0,0,0,0] -> [x1,y1,x2,y2]
|
|
|
|
ann = prompt_process.box_prompt(bbox=[200, 200, 300, 300])
|
|
|
|
|
|
|
|
# Text prompt
|
|
|
|
ann = prompt_process.text_prompt(text='a photo of a dog')
|
|
|
|
|
|
|
|
# Point prompt
|
|
|
|
# points default [[0,0]] [[x1,y1],[x2,y2]]
|
|
|
|
# point_label default [0] [1,0] 0:background, 1:foreground
|
|
|
|
ann = prompt_process.point_prompt(points=[[200, 200]], pointlabel=[1])
|
|
|
|
prompt_process.plot(annotations=ann, output='./')
|
|
|
|
|
|
|
|
|
|
|
|
def test_mobilesam():
|
|
|
|
from ultralytics import SAM
|
|
|
|
|
|
|
|
# Load the model
|
|
|
|
model = SAM('mobile_sam.pt')
|
|
|
|
|
|
|
|
# Predict a segment based on a point prompt
|
|
|
|
model.predict(ROOT / 'assets/zidane.jpg', points=[900, 370], labels=[1])
|
|
|
|
|
|
|
|
# Predict a segment based on a box prompt
|
|
|
|
model.predict(ROOT / 'assets/zidane.jpg', bboxes=[439, 437, 524, 709])
|
|
|
|
|
|
|
|
|
|
|
|
# Slow Tests
|
|
|
|
@pytest.mark.slow
|
|
|
|
@pytest.mark.parametrize('task,model,data', TASK_ARGS)
|
|
|
|
def test_train_gpu(task, model, data):
|
|
|
|
run(f'yolo train {task} model={model}.yaml data={data} imgsz=32 epochs=1 device="0"') # single GPU
|
|
|
|
run(f'yolo train {task} model={model}.pt data={data} imgsz=32 epochs=1 device="0,1"') # Multi GPU
|